The SNOTEL network is composed of over 800 automated data collection sites located in remote, high-elevation mountain watersheds in the western U.S. They are used to monitor snowpack, precipitation, temperature, and other climatic conditions. The data collected at SNOTEL sites are transmitted to a central database. This package queries this centralized database to provide easy access to these data and additional seasonal metrics of snow accumulation (snow phenology).
The SNOTEL network consists of a vast number of observation sites, all of them listed together with their meta-data on the SNOTEL website. The snotel_info()
function allows you to query this table and import it as a neat table into R
. Some of the meta-data, in particular the site id (site_id
), you will need of you want to download the data for a site. You can save this table to disk using the path
variable to specify a location on your computer where to store the data as a csv. If this parameter is missing the data is returned as an R
variable.
# download and list site information
site_meta_data <- snotel_info()
head(site_meta_data)
#> network state site_name
#> 1 SNTL AK frostbite bottom
#> 2 SNTL AK mcgrath
#> 3 SNTL UT parleys upper
#> 4 SNTL AK east palmer
#> 5 SNTL AK galena ak
#> 6 SNTL MT jl meadow
#> description start end
#> 1 Fishhook Creek-Little Susitna River (190205051202) 2019-02-01 2020-05-08
#> 2 Town of McGrath-Kuskokwim River (190304050502) 2019-08-01 2020-05-08
#> 3 Parleys Creek (160202040302) 2019-08-01 2020-05-08
#> 4 Outlet Matanuska River (190204020709) 2018-07-01 2020-05-08
#> 5 Louden Slough-Yukon River (190902051104) 2018-08-01 2020-05-08
#> 6 Dad Creek-Medicine Lodge Creek (100200011202) 2017-10-01 2020-05-08
#> latitude longitude elev county site_id
#> 1 61.75 -149.27 823 Matanuska-susitna 641
#> 2 62.95 -155.61 104 Yukon-koyukuk 785
#> 3 40.70 -111.61 2546 Salt Lake 856
#> 4 61.60 -149.10 70 Matanuska-susitna 953
#> 5 64.70 -156.71 125 Yukon-koyukuk 429
#> 6 44.78 -113.12 2682 Beaverhead 1287
If you downloaded the meta-data for all sites you can make a selection using either geographic coordinates, or state
columns. For the sake of brevity I’ll only query data for one site using its site_id
below. By default the data, reported in imperial values, are converted to metric measurements.
# downloading data for a random site
snow_data <- snotel_download(site_id = 670, internal = TRUE)
#> Downloading site: northeast entrance , with id: 670
# show the data
head(snow_data)
#> network state site_name description start
#> 1 SNTL MT northeast entrance Cold Creek (100700010602) 1937-10-01
#> 2 SNTL MT northeast entrance Cold Creek (100700010602) 1937-10-01
#> 3 SNTL MT northeast entrance Cold Creek (100700010602) 1937-10-01
#> 4 SNTL MT northeast entrance Cold Creek (100700010602) 1937-10-01
#> 5 SNTL MT northeast entrance Cold Creek (100700010602) 1937-10-01
#> 6 SNTL MT northeast entrance Cold Creek (100700010602) 1937-10-01
#> end latitude longitude elev county site_id
#> 1 2020-05-08 45.01 -110.01 2240 Yellowstone National Park 670
#> 2 2020-05-08 45.01 -110.01 2240 Yellowstone National Park 670
#> 3 2020-05-08 45.01 -110.01 2240 Yellowstone National Park 670
#> 4 2020-05-08 45.01 -110.01 2240 Yellowstone National Park 670
#> 5 2020-05-08 45.01 -110.01 2240 Yellowstone National Park 670
#> 6 2020-05-08 45.01 -110.01 2240 Yellowstone National Park 670
#> date snow_water_equivalent precipitation_cumulative temperature_max
#> 1 1966-10-01 0 NA NA
#> 2 1966-10-02 8 NA NA
#> 3 1966-10-03 0 NA NA
#> 4 1966-10-04 0 NA NA
#> 5 1966-10-05 0 NA NA
#> 6 1966-10-06 0 NA NA
#> temperature_min temperature_mean precipitation
#> 1 NA NA NA
#> 2 NA NA NA
#> 3 NA NA NA
#> 4 NA NA NA
#> 5 NA NA NA
#> 6 NA NA NA
Although the main function of the package is to provide easy access to the SNOTEL data a function snotel_phenology()
is provided to calculate seasonal metrics of snow deposition.
# subset data to the first decade of the century
snow_data_subset <- subset(snow_data, as.Date(date) > as.Date("2000-01-01") &
as.Date(date) < as.Date("2010-01-01"))
# plot the snow water equivalent time series
plot(as.Date(snow_data_subset$date),
snow_data_subset$snow_water_equivalent,
type = "l",
xlab = "Date",
ylab = "SWE (mm)")
# plot the dates of first snow accumulation as a red dot
points(as.Date(paste(phenology$year, phenology$first_snow_acc),"%Y %j"),
rep(1,nrow(phenology)),
col = "red",
pch = 19,
cex = 0.5)
A list of all provided snow phenology statistics is provided below.
Value | Description |
---|---|
year | The year in which the an event happened |
first_snow_melt | day of first full snow melt (in DOY) |
cont_snow_acc | start of continuous snow accumulation / retention (in DOY) |
last_snow_melt | day on which all snow melts for the remaining year (in DOY) |
first_snow_acc | day on which the first snow accumulates (in DOY) |
max_swe | maximum snow water equivalent value during a given year (in mm) |
max_swe_doy | day on which the maximum snow water equivalent value is reached (in DOY) |
Please use the proper Zenodo DOI when using this software for research purposes.