robustmeta: Robust Inference for Meta-Analysis with Influential Outlying Studies

Robust inference methods for fixed-effect and random-effects models of meta-analysis are implementable. The robust methods are developed using the density power divergence that is a robust estimating criterion developed in machine learning theory, and can effectively circumvent biases and misleading results caused by influential outliers. The density power divergence is originally introduced by Basu et al. (1998) <doi:10.1093/biomet/85.3.549>, and the meta-analysis methods are developed by Noma et al. (2022) <forthcoming>.

Version: 1.1-1
Depends: R (≥ 3.5.0)
Imports: stats, metafor
Published: 2022-07-21
Author: Hisashi Noma [aut, cre], Shonosuke Sugasawa [aut], Toshi A. Furukawa [aut]
Maintainer: Hisashi Noma <noma at ism.ac.jp>
License: GPL-3
NeedsCompilation: no
Materials: NEWS
CRAN checks: robustmeta results

Documentation:

Reference manual: robustmeta.pdf

Downloads:

Package source: robustmeta_1.1-1.tar.gz
Windows binaries: r-devel: robustmeta_1.1-1.zip, r-release: robustmeta_1.1-1.zip, r-oldrel: robustmeta_1.1-1.zip
macOS binaries: r-release (arm64): robustmeta_1.1-1.tgz, r-oldrel (arm64): robustmeta_1.1-1.tgz, r-release (x86_64): robustmeta_1.1-1.tgz, r-oldrel (x86_64): robustmeta_1.1-1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=robustmeta to link to this page.