regnet

Regularized Network-Based Variable Selection

Travis-CI Build Status CRAN CRAN RStudio mirror downloads

Network-based regularization has achieved success in variable selection for high-dimensional biological data due to its ability to incorporate correlations among genomic features. This package provides procedures of network-based variable selection for generalized linear models (Ren et al.(2017) and Ren et al.(2019)). Two recent additions are the robust network regularization for the survival response and the network regularization for continuous response. Functions for other regularization methods will be included in the forthcoming upgraded versions.

How to install

install.packages("devtools")
devtools::install_github("jrhub/regnet")
install.packages("regnet")

Examples

Survival response

Example.1 (Robust Network)

data(SurvExample)
X = rgn.surv$X
Y = rgn.surv$Y
clv = c(1:5) # variable 1 to 5 are clinical variables, we choose not to penalize them here.
out = cv.regnet(X, Y, response="survival", penalty="network", clv=clv, robust=TRUE, verbo = TRUE)
out$lambda
b = regnet(X, Y, "survival", "network", out$lambda[1,1], out$lambda[1,2], clv=clv, robust=TRUE)  
index = which(rgn.surv$beta[-(1:6)] != 0)  # [-(1:6)] removes the intercept and clinical variables that are not subject to selection.
pos = which(b[-(1:6)] != 0)  
tp = length(intersect(index, pos))  
fp = length(pos) - tp  
list(tp=tp, fp=fp)  

Binary response

Example.2 (Network Logistic)

data(LogisticExample)
X = rgn.logi$X
Y = rgn.logi$Y
out = cv.regnet(X, Y, response="binary", penalty="network", folds=5, r = 4.5)  
out$lambda 
b = regnet(X, Y, "binary", "network", out$lambda[1,1], out$lambda[1,2], r = 4.5)
index = which(rgn.logi$beta[-1] != 0)   # [-1] removes the intercept
pos = which(b[-1] != 0)  
tp = length(intersect(index, pos))  
fp = length(pos) - tp  
list(tp=tp, fp=fp)  

News

regnet 0.4.0 [2019-6-7]

Based on users’ feedback, we have

regnet 0.3.0 [2018-5-21]

regnet 0.2.0 [2017-10-14]

Methods

This package provides implementation for methods proposed in

References