The repository also includes the code to create the project
hexsticker.
Author
- Ian D. Buller - Occupational and Environmental
Epidemiology Branch, Division of Cancer Epidemiology and Genetics,
National Cancer Institute, National Institutes of Health, Rockville,
Maryland - GitHub - ORCID
See also the list of contributors
who participated in this package.
Getting Started
- Step 1: You must obtain a unique access key from the U.S. Census
Bureau. Follow this
link to obtain one.
- Step 2: Specify your access key in the
messer()
or
powell_wiley()
functions using the key
argument or by using the census_api_key()
function from the
tidycensus
package before running the messer()
or powell_wiley()
functions (see an example below).
Usage
# ------------------ #
# Necessary packages #
# ------------------ #
library(ndi)
library(ggplot2)
library(sf)
library(tidycensus) # a dependency for the "ndi"" package
library(tigris) # a dependency for the "ndi"" package
# -------- #
# Settings #
# -------- #
## Access Key for census data download
### Obtain one at http://api.census.gov/data/key_signup.html
tidycensus::census_api_key("...") # INSERT YOUR OWN KEY FROM U.S. CENSUS API
# ---------------------- #
# Calculate NDI (Messer) #
# ---------------------- #
# Compute the NDI (Messer) values (2016-2020 5-year ACS) for Washington, D.C. census tracts
messer2020DC <- ndi::messer(state = "DC", year = 2020)
# ------------------------------ #
# Outputs from messer() function #
# ------------------------------ #
# A tibble containing the identification, geographic name, NDI (Messer) values, NDI (Messer) quartiles, and raw census characteristics for each tract
messer2020DC$ndi
# The results from the principal component analysis used to compute the NDI (Messer) values
messer2020DC$pca
# A tibble containing a breakdown of the missingingness of the census characteristics used to compute the NDI (Messer) values
messer2020DC$missing
# -------------------------------------- #
# Visualize the messer() function output #
# -------------------------------------- #
# Obtain the 2020 census tracts from the "tigris" package
tract2020DC <- tigris::tracts(state = "DC", year = 2020, cb = TRUE)
# Join the NDI (Messer) values to the census tract geometry
DC2020messer <- merge(tract2020DC, messer2020DC$ndi, by = "GEOID")
# Visualize the NDI (Messer) values (2016-2020 5-year ACS) for Washington, D.C. census tracts
## Continuous Index
ggplot2::ggplot() +
ggplot2::geom_sf(data = DC2020messer,
ggplot2::aes(fill = NDI),
color = "white") +
ggplot2::theme_bw() +
ggplot2::scale_fill_viridis_c() +
ggplot2::labs(fill = "Index (Continuous)",
caption = "Source: U.S. Census ACS 2016-2020 estimates")+
ggplot2::ggtitle("Neighborhood Deprivation Index\nContinuous (Messer, non-imputed)",
subtitle = "Washington, D.C. tracts as the referent")
## Categorical Index (Quartiles)
### Rename "9-NDI not avail" level as NA for plotting
DC2020messer$NDIQuartNA <- factor(replace(as.character(DC2020messer$NDIQuart),
DC2020messer$NDIQuart == "9-NDI not avail",
NA),
c(levels(DC2020messer$NDIQuart)[-5], NA))
ggplot2::ggplot() +
ggplot2::geom_sf(data = DC2020messer,
ggplot2::aes(fill = NDIQuartNA),
color = "white") +
ggplot2::theme_bw() +
ggplot2::scale_fill_viridis_d(guide = ggplot2::guide_legend(reverse = TRUE),
na.value = "grey50") +
ggplot2::labs(fill = "Index (Categorical)",
caption = "Source: U.S. Census ACS 2016-2020 estimates") +
ggplot2::ggtitle("Neighborhood Deprivation Index\nQuartiles (Messer, non-imputed)",
subtitle = "Washington, D.C. tracts as the referent")
# ---------------------------- #
# Calculate NDI (Powell-Wiley) #
# ---------------------------- #
# Compute the NDI (Powell-Wiley) values (2016-2020 5-year ACS) for Washington, D.C. census tracts
powell_wiley2020DC <- powell_wiley(state = "DC", year = 2020)
powell_wiley2020DCi <- powell_wiley(state = "DC", year = 2020, imp = TRUE) # impute missing values
# ------------------------------------ #
# Outputs from powell_wiley() function #
# ------------------------------------ #
# A tibble containing the identification, geographic name, NDI (Powell-Wiley) value, and raw census characteristics for each tract
powell_wiley2020DC$ndi
# The results from the principal component analysis used to compute the NDI (Powell-Wiley) values
powell_wiley2020DC$pca
# A tibble containing a breakdown of the missingingness of the census characteristics used to compute the NDI (Powell-Wiley) values
powell_wiley2020DC$missing
# -------------------------------------------- #
# Visualize the powell_wiley() function output #
# -------------------------------------------- #
# Obtain the 2020 census tracts from the "tigris" package
tract2020DC <- tigris::tracts(state = "DC", year = 2020, cb = TRUE)
# Join the NDI (powell_wiley) values to the census tract geometry
DC2020powell_wiley <- merge(tract2020DC, powell_wiley2020DC$ndi, by = "GEOID")
DC2020powell_wiley <- merge(DC2020powell_wiley, powell_wiley2020DCi$ndi, by = "GEOID")
# Visualize the NDI (Powell-Wiley) values (2016-2020 5-year ACS) for Washington, D.C. census tracts
## Non-imputed missing tracts (Continuous)
ggplot2::ggplot() +
ggplot2::geom_sf(data = DC2020powell_wiley,
ggplot2::aes(fill = NDI.x),
color = "white") +
ggplot2::theme_bw() +
ggplot2::scale_fill_viridis_c() +
ggplot2::labs(fill = "Index (Continuous)",
caption = "Source: U.S. Census ACS 2016-2020 estimates")+
ggplot2::ggtitle("Neighborhood Deprivation Index\nContinuous (Powell-Wiley, non-imputed)",
subtitle = "Washington, D.C. tracts as the referent")
## Non-imputed missing tracts (Categorical quintiles)
### Rename "9-NDI not avail" level as NA for plotting
DC2020powell_wiley$NDIQuintNA.x <- factor(replace(as.character(DC2020powell_wiley$NDIQuint.x),
DC2020powell_wiley$NDIQuint.x == "9-NDI not avail",
NA),
c(levels(DC2020powell_wiley$NDIQuint.x)[-6], NA))
ggplot2::ggplot() +
ggplot2::geom_sf(data = DC2020powell_wiley,
ggplot2::aes(fill = NDIQuintNA.x),
color = "white") +
ggplot2::theme_bw() +
ggplot2::scale_fill_viridis_d(guide = ggplot2::guide_legend(reverse = TRUE),
na.value = "grey50") +
ggplot2::labs(fill = "Index (Categorical)",
caption = "Source: U.S. Census ACS 2016-2020 estimates")+
ggplot2::ggtitle("Neighborhood Deprivation Index\nPopulation-weighted Quintiles (Powell-Wiley, non-imputed)",
subtitle = "Washington, D.C. tracts as the referent")
## Imputed missing tracts (Continuous)
ggplot2::ggplot() +
ggplot2::geom_sf(data = DC2020powell_wiley,
ggplot2::aes(fill = NDI.y),
color = "white") +
ggplot2::theme_bw() +
ggplot2::scale_fill_viridis_c() +
ggplot2::labs(fill = "Index (Continuous)",
caption = "Source: U.S. Census ACS 2016-2020 estimates")+
ggplot2::ggtitle("Neighborhood Deprivation Index\nContinuous (Powell-Wiley, imputed)",
subtitle = "Washington, D.C. tracts as the referent")
## Imputed missing tracts (Categorical quintiles)
### Rename "9-NDI not avail" level as NA for plotting
DC2020powell_wiley$NDIQuintNA.y <- factor(replace(as.character(DC2020powell_wiley$NDIQuint.y),
DC2020powell_wiley$NDIQuint.y == "9-NDI not avail",
NA),
c(levels(DC2020powell_wiley$NDIQuint.y)[-6], NA))
ggplot2::ggplot() +
ggplot2::geom_sf(data = DC2020powell_wiley,
ggplot2::aes(fill = NDIQuintNA.y),
color = "white") +
ggplot2::theme_bw() +
ggplot2::scale_fill_viridis_d(guide = ggplot2::guide_legend(reverse = TRUE),
na.value = "grey50") +
ggplot2::labs(fill = "Index (Categorical)",
caption = "Source: U.S. Census ACS 2016-2020 estimates")+
ggplot2::ggtitle("Neighborhood Deprivation Index\nPopulation-weighted Quintiles (Powell-Wiley, imputed)",
subtitle = "Washington, D.C. tracts as the referent")
# --------------------------- #
# Compare the two NDI metrics #
# --------------------------- #
# Merge the two NDI metrics (Messer and Powell-Wiley, imputed)
ndi2020DC <- merge(messer2020DC$ndi, powell_wiley2020DCi$ndi, by = "GEOID", suffixes = c(".messer", ".powell_wiley"))
# Check the correlation the two NDI metrics (Messer and Powell-Wiley, imputed) as continuous values
cor(ndi2020DC$NDI.messer, ndi2020DC$NDI.powell_wiley, use = "complete.obs") # Pearsons r = 0.975
# Check the similarity of the two NDI metrics (Messer and Powell-Wiley, imputed) as quartiles
table(ndi2020DC$NDIQuart, ndi2020DC$NDIQuint)
Funding
This package was developed while the author was a postdoctoral fellow
supported by the Cancer Prevention
Fellowship Program at the National
Cancer Institute.
Acknowledgments
The messer()
function functionalizes the code found in
Hruska et
al. (2022) available on an OSF repository, but
with percent with income less than $30K added to the computation based
on Messer et
al. (2006). The messer()
function also allows for the
computation of NDI (Messer) of each year between 2010-2020 (when the
U.S. census characteristics are available to-date). There was no code
companion to compute NDI (Powell-Wiley) included in Andrews et
al. (2020) or Slotman et
al. (2022), but the package author worked directly with the latter
manuscript authors to replicate their SAS
code in
R
for the powell_wiley()
function. Please
note: the NDI (Powell-Wiley) values will not exactly match (but will
highly correlate with) those found in Andrews et
al. (2020) and Slotman et
al. (2022) because the two studies used a different statistical
platform (i.e., SPSS
and SAS
, respectively)
that intrinsically calculate the principal component analysis
differently from R
.
When citing this package for publication, please follow:
citation("ndi")
Questions? Feedback?
For questions about the package please contact the maintainer
Dr. Ian D. Buller
or submit a new issue.
Confirmation of the computation, feedback, and feature collaboration is
welcomed, especially from the authors of references cited above.