Twin models

Klaus Holst & Thomas Scheike

This document provides a brief tutorial to analyzing twin data using the mets package:

\(\newcommand{\cov}{\mathbb{C}\text{ov}} \newcommand{\cor}{\mathbb{C}\text{or}} \newcommand{\var}{\mathbb{V}\text{ar}} \newcommand{\E}{\mathbb{E}} \newcommand{\unitfrac}[2]{#1/#2} \newcommand{\n}{}\)

The development version may be installed from github:

# install.packages("remotes")
remotes::install_github("kkholst/mets", dependencies="Suggests")

Twin analysis, continuous traits

In the following we examine the heritability of Body Mass Indexkorkeila_bmi_1991 hjelmborg_bmi_2008, based on data on self-reported BMI-values from a random sample of 11,411 same-sex twins. First, we will load data

library(mets)
data("twinbmi")
head(twinbmi)
#>   tvparnr      bmi      age gender zyg id num
#> 1       1 26.33289 57.51212   male  DZ  1   1
#> 2       1 25.46939 57.51212   male  DZ  1   2
#> 3       2 28.65014 56.62696   male  MZ  2   1
#> 5       3 28.40909 57.73097   male  DZ  3   1
#> 7       4 27.25089 53.68683   male  DZ  4   1
#> 8       4 28.07504 53.68683   male  DZ  4   2

The data is on long format with one subject per row.

We transpose the data allowing us to do pairwise analyses

twinwide <- fast.reshape(twinbmi, id="tvparnr",varying=c("bmi"))
head(twinwide)
#>    tvparnr     bmi1      age gender zyg id num     bmi2
#> 1        1 26.33289 57.51212   male  DZ  1   1 25.46939
#> 3        2 28.65014 56.62696   male  MZ  2   1       NA
#> 5        3 28.40909 57.73097   male  DZ  3   1       NA
#> 7        4 27.25089 53.68683   male  DZ  4   1 28.07504
#> 9        5 27.77778 52.55838   male  DZ  5   1       NA
#> 11       6 28.04282 52.52231   male  DZ  6   1 22.30936

Next we plot the association within each zygosity group

We here show the log-transformed data which is slightly more symmetric and more appropiate for the twin analysis (see Figure @ref(fig:scatter1) and @ref(fig:scatter2))

mz <- log(subset(twinwide, zyg=="MZ")[,c("bmi1","bmi2")])
scatterdens(mz)
Scatter plot of logarithmic BMI measurements in MZ twins

Scatter plot of logarithmic BMI measurements in MZ twins

dz <- log(subset(twinwide, zyg=="DZ")[,c("bmi1","bmi2")])
scatterdens(dz)
Scatter plot of logarithmic BMI measurements in DZ twins

Scatter plot of logarithmic BMI measurements in DZ twins

The plots and raw association measures shows considerable stronger dependence in the MZ twins, thus indicating genetic influence of the trait

cor.test(mz[,1],mz[,2], method="spearman")
#> 
#>  Spearman's rank correlation rho
#> 
#> data:  mz[, 1] and mz[, 2]
#> S = 165457624, p-value < 2.2e-16
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#>       rho 
#> 0.6956209
cor.test(dz[,1],dz[,2], method="spearman")
#> 
#>  Spearman's rank correlation rho
#> 
#> data:  dz[, 1] and dz[, 2]
#> S = 2162514570, p-value < 2.2e-16
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#>       rho 
#> 0.4012686

Ńext we examine the marginal distribution (GEE model with working independence)

l0 <- lm(bmi ~ gender + I(age-40), data=twinbmi)
estimate(l0, id=twinbmi$tvparnr)
#>             Estimate  Std.Err    2.5%   97.5%    P-value
#> (Intercept)  23.3687 0.054534 23.2618 23.4756  0.000e+00
#> gendermale    1.4077 0.073216  1.2642  1.5512  2.230e-82
#> I(age - 40)   0.1177 0.004787  0.1083  0.1271 1.499e-133
library("splines")
l1 <- lm(bmi ~ gender*ns(age,3), data=twinbmi)
marg1 <- estimate(l1, id=twinbmi$tvparnr)
dm <- Expand(twinbmi,
        bmi=0,
        gender=c("male"),
        age=seq(33,61,length.out=50))
df <- Expand(twinbmi,
        bmi=0,
        gender=c("female"),
        age=seq(33,61,length.out=50))

plot(marg1, function(p) model.matrix(l1,data=dm)%*%p,
     data=dm["age"], ylab="BMI", xlab="Age",
     ylim=c(22,26.5))
plot(marg1, function(p) model.matrix(l1,data=df)%*%p,
     data=df["age"], col="red", add=TRUE)
legend("bottomright", c("Male","Female"),
       col=c("black","red"), lty=1, bty="n")
Marginal association between BMI and Age for males and females.

Marginal association between BMI and Age for males and females.

Polygenic model

We can decompose the trait into the following variance components

\[\begin{align*} Y_i = A_i + D_i + C + E_i, \quad i=1,2 \end{align*}\]

Dissimilarity of MZ twins arises from unshared environmental effects only, \(\cor(E_1,E_2)=0\) and

\[\begin{align*} \cor(A_1^{MZ},A_2^{MZ}) = 1, \quad \cor(D_1^{MZ},D_2^{MZ}) = 1, \end{align*}\]

\[\begin{align*} \cor(A_1^{DZ},A_2^{DZ}) = 0.5, \quad \cor(D_1^{DZ},D_2^{DZ}) = 0.25, \end{align*}\]

\[\begin{align*} Y_i = A_i + C_i + D_i + E_i \end{align*}\]

\[\begin{align*} A_i \sim\mathcal{N}(0,\sigma_A^2), C_i \sim\mathcal{N}(0,\sigma_C^2), D_i \sim\mathcal{N}(0,\sigma_D^2), E_i \sim\mathcal{N}(0,\sigma_E^2) \end{align*}\]

\[\begin{gather*} \cov(Y_{1},Y_{2}) = \\ \begin{pmatrix} \sigma_A^2 & 2\Phi\sigma_A^2 \\ 2\Phi\sigma_A^2 & \sigma_A^2 \end{pmatrix} + \begin{pmatrix} \sigma_C^2 & \sigma_C^2 \\ \sigma_C^2 & \sigma_C^2 \end{pmatrix} + \begin{pmatrix} \sigma_D^2 & \Delta_{7}\sigma_D^2 \\ \Delta_{7}\sigma_D^2 & \sigma_D^2 \end{pmatrix} + \begin{pmatrix} \sigma_E^2 & 0 \\ 0 & \sigma_E^2 \end{pmatrix} \end{gather*}\]

dd <- na.omit(twinbmi)
l0 <- twinlm(bmi ~ age+gender, data=dd, DZ="DZ", zyg="zyg", id="tvparnr", type="sat")

# different marginals (but within pair)
lf <- twinlm(bmi ~ age+gender, data=dd,DZ="DZ", zyg="zyg", id="tvparnr", type="flex")

# same marginals but free correlation with MZ, DZ 
lu <- twinlm(bmi ~ age+gender, data=dd, DZ="DZ", zyg="zyg", id="tvparnr", type="u")
estimate(lu,contr(5:6,6))
#>                           Estimate Std.Err   2.5%  97.5%   P-value
#> [atanh(rhoMZ)@1] - [a....   0.4816 0.04177 0.3997 0.5635 9.431e-31
#> 
#>  Null Hypothesis: 
#>   [atanh(rhoMZ)@1] - [atanh(rhoDZ)@2] = 0
estimate(lu)
#>                      Estimate  Std.Err    2.5%   97.5%    P-value
#> bmi.1@1               18.6037 0.251036 18.1116 19.0957  0.000e+00
#> bmi.1~age.1@1          0.1189 0.005635  0.1078  0.1299  9.177e-99
#> bmi.1~gendermale.1@1   1.3848 0.086573  1.2151  1.5544  1.376e-57
#> log(var)@1             2.4424 0.022095  2.3991  2.4857  0.000e+00
#> atanh(rhoMZ)@1         0.7803 0.036249  0.7092  0.8513 9.008e-103
#> atanh(rhoDZ)@2         0.2987 0.020953  0.2576  0.3397  4.288e-46

lf <- twinlm(bmi ~ zyg, data=dd, DZ="DZ", zyg="zyg", id="tvparnr", type="flex")
coef(lf)
#>         bmi.1@1         bmi.1@2 bmi.1~zygMZ.1@1  log(var(MZ))@1  atanh(rhoMZ)@1 
#>      24.5832960      24.6575702      -0.3968696       2.5289387       0.8362321 
#> bmi.1~zygMZ.1@2  log(var(DZ))@2  atanh(rhoDZ)@2 
#>      -0.3968689       2.5659593       0.3860756


###sink("lu-est-summary.txt")
lu <- twinlm(bmi ~ zyg, data=dd, DZ="DZ", zyg="zyg", id="tvparnr", type="u")
summary(lu)
#> ____________________________________________________
#> Group 1: MZ (n=1483)
#>                         Estimate Std. Error   Z value  Pr(>|z|)
#> Regressions:                                                   
#>    bmi.1~zygMZ.1        -0.47114    0.10242  -4.60001 4.225e-06
#> Intercepts:                                                    
#>    bmi.1                24.65757    0.05614 439.18694    <1e-12
#> Additional Parameters:                                         
#>    log(var)              2.55537    0.01699 150.37316    <1e-12
#>    atanh(rhoMZ)          0.84865    0.02296  36.96325    <1e-12
#> ____________________________________________________
#> Group 2: DZ (n=2788)
#>                         Estimate Std. Error   Z value  Pr(>|z|)
#> Regressions:                                                   
#>    bmi.1~zygMZ.1        -0.47114    0.10242  -4.60001 4.225e-06
#> Intercepts:                                                    
#>    bmi.1                24.65757    0.05614 439.18694    <1e-12
#> Additional Parameters:                                         
#>    log(var)              2.55537    0.01699 150.37316    <1e-12
#>    atanh(rhoDZ)          0.38268    0.01847  20.71970    <1e-12
#> 
#>                        Estimate 2.5%    97.5%  
#> Correlation within MZ: 0.69036  0.66607 0.71319
#> Correlation within DZ: 0.36503  0.33325 0.39598
#> 
#> 'log Lik.' -22355.15 (df=5)
#> AIC: 44720.3 
#> BIC: 44752.1
estimate(lu)
#>                 Estimate Std.Err    2.5%   97.5%    P-value
#> bmi.1@1          24.6576 0.05650 24.5468 24.7683  0.000e+00
#> bmi.1~zygMZ.1@1  -0.4711 0.10155 -0.6702 -0.2721  3.489e-06
#> log(var)@1        2.5554 0.02019  2.5158  2.5949  0.000e+00
#> atanh(rhoMZ)@1    0.8486 0.03554  0.7790  0.9183 5.146e-126
#> atanh(rhoDZ)@2    0.3827 0.02095  0.3416  0.4237  1.545e-74
crossprod(iid(lu))^.5
#>            [,1]       [,2]        [,3]       [,4]        [,5]
#> [1,] 0.05650271        NaN 0.019575810 0.01346928         NaN
#> [2,]        NaN 0.10154621 0.004344490        NaN 0.015803415
#> [3,] 0.01957581 0.00434449 0.020190842 0.01053796 0.006669272
#> [4,] 0.01346928        NaN 0.010537960 0.03554047         NaN
#> [5,]        NaN 0.01580342 0.006669272        NaN 0.020950321
###sink()

vcov(lu)
#>               [,1]          [,2]          [,3]         [,4]          [,5]
#> [1,]  3.152113e-03 -3.152113e-03  8.675199e-09 4.107103e-09  7.707502e-09
#> [2,] -3.152113e-03  1.049033e-02 -3.973997e-10 3.391234e-09 -5.078878e-09
#> [3,]  8.675199e-09 -3.973997e-10  2.887794e-04 1.367167e-04  9.170282e-05
#> [4,]  4.107103e-09  3.391234e-09  1.367167e-04 5.271249e-04  4.341482e-05
#> [5,]  7.707502e-09 -5.078878e-09  9.170282e-05 4.341482e-05  3.411139e-04
#> attr(,"det")
#> [1] 1.037717e+15
#> attr(,"pseudo")
#> [1] FALSE
#> attr(,"minSV")
#> [1] 85.77516

estimate(lu)
#>                 Estimate Std.Err    2.5%   97.5%    P-value
#> bmi.1@1          24.6576 0.05650 24.5468 24.7683  0.000e+00
#> bmi.1~zygMZ.1@1  -0.4711 0.10155 -0.6702 -0.2721  3.489e-06
#> log(var)@1        2.5554 0.02019  2.5158  2.5949  0.000e+00
#> atanh(rhoMZ)@1    0.8486 0.03554  0.7790  0.9183 5.146e-126
#> atanh(rhoDZ)@2    0.3827 0.02095  0.3416  0.4237  1.545e-74
dim(iid(lu))
#> [1] 4271    5

estimate(lu,contr(4:5,5))
#>                           Estimate Std.Err   2.5%  97.5%   P-value
#> [atanh(rhoMZ)@1] - [a....    0.466 0.04138 0.3849 0.5471 2.026e-29
#> 
#>  Null Hypothesis: 
#>   [atanh(rhoMZ)@1] - [atanh(rhoDZ)@2] = 0

estimate(coef=coef(lu),vcov=vcov(lu),contr(4:5,5))
#>                 Estimate Std.Err    2.5%   97.5%    P-value
#> bmi.1@1          24.6576 0.05614 24.5475 24.7676  0.000e+00
#> bmi.1~zygMZ.1@1  -0.4711 0.10242 -0.6719 -0.2704  4.225e-06
#> log(var)@1        2.5554 0.01699  2.5221  2.5887  0.000e+00
#> atanh(rhoMZ)@1    0.8486 0.02296  0.8036  0.8936 4.462e-299
#> atanh(rhoDZ)@2    0.3827 0.01847  0.3465  0.4189  2.301e-95

wald.test(coef=coef(lu),vcov=vcov(lu),contrast=c(0,0,0,1,-1))
#>   lin.comb        se     lower     upper pval
#> B 0.465969 0.0279537 0.4111807 0.5207572    0
#> 
#>  Wald test
#> 
#> data:  
#> chisq = 277.87, df = 1, p-value < 2.2e-16

l <- twinlm(bmi ~ ns(age,1)+gender, data=twinbmi,
           DZ="DZ", zyg="zyg", id="tvparnr", type="cor", missing=TRUE)
summary(l)
#> ____________________________________________________
#> Group 1
#>                         Estimate Std. Error   Z value Pr(>|z|)
#> Regressions:                                                  
#>    bmi.1~ns(age, 1).1    4.16937    0.16669  25.01334   <1e-12
#>    bmi.1~gendermale.1    1.41160    0.07284  19.37839   <1e-12
#> Intercepts:                                                   
#>    bmi.1                22.53618    0.07296 308.87100   <1e-12
#> Additional Parameters:                                        
#>    log(var)              2.44580    0.01425 171.68256   <1e-12
#>    atanh(rhoMZ)          0.78217    0.02290  34.16186   <1e-12
#> ____________________________________________________
#> Group 2
#>                         Estimate Std. Error   Z value Pr(>|z|)
#> Regressions:                                                  
#>    bmi.1~ns(age, 1).1    4.16937    0.16669  25.01334   <1e-12
#>    bmi.1~gendermale.1    1.41160    0.07284  19.37839   <1e-12
#> Intercepts:                                                   
#>    bmi.1                22.53618    0.07296 308.87100   <1e-12
#> Additional Parameters:                                        
#>    log(var)              2.44580    0.01425 171.68256   <1e-12
#>    atanh(rhoDZ)          0.29924    0.01848  16.19580   <1e-12
#> 
#>                        Estimate 2.5%    97.5%  
#> Correlation within MZ: 0.65395  0.62751 0.67889
#> Correlation within DZ: 0.29061  0.25712 0.32341
#> 
#> 'log Lik.' -29020.12 (df=6)
#> AIC: 58052.24 
#> BIC: 58093.29

A formal test of genetic effects can be obtained by comparing the MZ and DZ correlation:

estimate(l,contr(5:6,6))
#>                           Estimate Std.Err   2.5%  97.5%   P-value
#> [atanh(rhoMZ)@1] - [a....   0.4829 0.04176 0.4011 0.5648 6.325e-31
#> 
#>  Null Hypothesis: 
#>   [atanh(rhoMZ)@1] - [atanh(rhoDZ)@3] = 0
l <- twinlm(bmi ~ ns(age,1)+gender, data=twinbmi,
           DZ="DZ", zyg="zyg", id="tvparnr", type="cor", missing=TRUE)
summary(l)
#> ____________________________________________________
#> Group 1
#>                         Estimate Std. Error   Z value Pr(>|z|)
#> Regressions:                                                  
#>    bmi.1~ns(age, 1).1    4.16937    0.16669  25.01334   <1e-12
#>    bmi.1~gendermale.1    1.41160    0.07284  19.37839   <1e-12
#> Intercepts:                                                   
#>    bmi.1                22.53618    0.07296 308.87100   <1e-12
#> Additional Parameters:                                        
#>    log(var)              2.44580    0.01425 171.68256   <1e-12
#>    atanh(rhoMZ)          0.78217    0.02290  34.16186   <1e-12
#> ____________________________________________________
#> Group 2
#>                         Estimate Std. Error   Z value Pr(>|z|)
#> Regressions:                                                  
#>    bmi.1~ns(age, 1).1    4.16937    0.16669  25.01334   <1e-12
#>    bmi.1~gendermale.1    1.41160    0.07284  19.37839   <1e-12
#> Intercepts:                                                   
#>    bmi.1                22.53618    0.07296 308.87100   <1e-12
#> Additional Parameters:                                        
#>    log(var)              2.44580    0.01425 171.68256   <1e-12
#>    atanh(rhoDZ)          0.29924    0.01848  16.19580   <1e-12
#> 
#>                        Estimate 2.5%    97.5%  
#> Correlation within MZ: 0.65395  0.62751 0.67889
#> Correlation within DZ: 0.29061  0.25712 0.32341
#> 
#> 'log Lik.' -29020.12 (df=6)
#> AIC: 58052.24 
#> BIC: 58093.29

We also consider the ACE model

ace0 <- twinlm(bmi ~ age+gender, data=dd, DZ="DZ", zyg="zyg", id="tvparnr", type="ace")

Twin analysis, censored outcomes

Twin analysis, binary traits

Bibliography

[korkeila_bmi_1991] Korkeila, Kaprio, Rissanen & Koskenvuo, Effects of gender and age on the heritability of body mass index, Int J Obes, 15(10), 647-654 (1991). ↩︎

[hjelmborg_bmi_2008] Hjelmborg, Fagnani, Silventoinen, McGue, Korkeila, Christensen, Rissanen & Kaprio, Genetic influences on growth traits of BMI: a longitudinal study of adult twins, Obesity (Silver Spring), 16(4), 847-852 (2008). ↩︎