kernelshap: Kernel SHAP

Implementation of the model-agnostic Kernel SHAP algorithm by Ian Covert and Su-In Lee (2021) <http://proceedings.mlr.press/v130/covert21a>. Due to its iterative nature, standard errors of the SHAP values are provided and convergence is monitored. The package allows to work with any model that provides numeric predictions. Examples include linear regression, logistic regression (logit or probability scale), other generalized linear models, generalized additive models, and neural networks. The package plays well together with meta-learning packages like 'caret' or 'mlr3'. Visualizations can be done using the R package 'shapviz'.

Version: 0.1.0
Depends: R (≥ 3.2.0)
Imports: stats, utils
Suggests: testthat (≥ 3.0.0)
Published: 2022-08-12
Author: Michael Mayer [aut, cre]
Maintainer: Michael Mayer <mayermichael79 at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: README NEWS
CRAN checks: kernelshap results

Documentation:

Reference manual: kernelshap.pdf

Downloads:

Package source: kernelshap_0.1.0.tar.gz
Windows binaries: r-devel: kernelshap_0.1.0.zip, r-release: kernelshap_0.1.0.zip, r-oldrel: not available
macOS binaries: r-release (arm64): kernelshap_0.1.0.tgz, r-oldrel (arm64): kernelshap_0.1.0.tgz, r-release (x86_64): kernelshap_0.1.0.tgz, r-oldrel (x86_64): kernelshap_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=kernelshap to link to this page.