This repository contains R package for InfluxDB 2.0 client.
The InfluxDB 2.0 client supports:
This section contains links to the client library documentation.
The package requires R >= 3.3.
influxdbclient
packageThe package is published on CRAN and can be installed with
The latest development version can be installed with
library(influxdbclient)
client <- InfluxDBClient$new(url = "http://localhost:8086",
token = "my-token",
org = "my-org")
Parameters
Parameter | Description | Type | Default |
---|---|---|---|
url |
InfluxDB instance URL | character |
none |
token |
authentication token | character |
none |
org |
organization name | character |
none |
Hint: to avoid SSL certificate validation errors when accessing InfluxDB instance over https such as SSL certificate problem: unable to get local issuer certificate
, you can try to disable the validation using the following call before using any InfluxDBClient
method. Warning: it will disable peer certificate validation for the current R session.
Use query
method.
client <- InfluxDBClient$new(url = "http://localhost:8086",
token = "my-token",
org = "my-org")
data <- client$query('from(bucket: "my-bucket") |> range(start: -1h) |> drop(columns: ["_start", "_stop"])')
data
Flux query can yield multiple results in one response, where each result may contain multiple tables.
Return value is therefore a named list, where each element is a list of data frames that represent a result. Data frame represents Flux table. You can list the results using names
method.
Quite often, though, there is just a single result and therefore the query
by default flattens the return value to simple unnamed list of data frames. This behaviour controlled by flatSingleResult
parameter. With flatSingleResult = FALSE
, you can check that the return value contains one element with name "_result"
(default result name when there is no explicit yield
in the query) and use the name to retrieve it, like
> names(data)
[1] "_result"
> data[["_result"]]
[[1]]
time name region sensor_id altitude grounded temperature
1 2021-06-09T09:52:41+00:00 airSensors south TLM0101 549 FALSE 71.7844100
2 2021-06-09T09:52:51+00:00 airSensors south TLM0101 547 FALSE 71.7684399
3 2021-06-09T09:53:01+00:00 airSensors south TLM0101 563 TRUE 71.7819928
4 2021-06-09T09:53:11+00:00 airSensors south TLM0101 560 TRUE 71.7487767
5 2021-06-09T09:53:21+00:00 airSensors south TLM0101 544 FALSE 71.7335579
Parameters
Parameter | Description | Type | Default |
---|---|---|---|
text |
Flux query | character |
none |
POSIXctCol |
Flux time to POSIXct column mapping |
named list |
c("_time"="time") |
flatSingleResult |
Whether to return simple list when response contains only one result | logical | TRUE |
Flux type | R type |
---|---|
string |
character |
int |
integer64 |
float |
numeric |
bool |
logical |
time |
nanotime |
Flux timestamps are parsed into nanotime
(integer64
underneath) type, because R datetime types do not support nanosecond precision. nanotime
is not a time-based object appropriate for creating a time series, though. By default, query
coerces the _time
column to time
column of POSIXct
type (see POSIXctCol
parameter), with possible loss precision (which is unimportant in the context of R time series).
Select data of interest from the result like
# from the first data frame, pick subset containing `time` and `_value` columns only
df1 <- data[[1]][c("time", "_value")]
Then, a time series object can be created from the data frame, eg. using tsbox
package:
A data frame, or a time series object created from it, can be used for decomposition, anomaly detection etc, like
or
Use write
method.
client <- InfluxDBClient$new(url = "http://localhost:8086",
token = "my-token",
org = "my-org")
data <- ...
response <- client$write(data, bucket = "my-bucket", precision = "us",
measurementCol = "name",
tagCols = c("region", "sensor_id"),
fieldCols = c("altitude", "temperature"),
timeCol = "time")
The example is valid for data.frame
data
like the following:
> print(data)
time name region sensor_id altitude grounded temperature
1 2021-06-09T09:52:41+00:00 airSensors south TLM0101 549 FALSE 71.7844100
2 2021-06-09T09:52:51+00:00 airSensors south TLM0101 547 FALSE 71.7684399
3 2021-06-09T09:53:01+00:00 airSensors south TLM0101 563 TRUE 71.7819928
4 2021-06-09T09:53:11+00:00 airSensors south TLM0101 560 TRUE 71.7487767
5 2021-06-09T09:53:21+00:00 airSensors south TLM0101 544 FALSE 71.7335579
> str(data)
'data.frame': 5 obs. of 7 variables:
$ time :integer64 1623232361000000000 1623232371000000000 1623232381000000000 1623232391000000000 1623232401000000000
$ name : chr "airSensors" "airSensors" "airSensors" "airSensors" ...
$ region : chr "south" "south" "south" "south" ...
$ sensor_id : chr "TLM0101" "TLM0101" "TLM0101" "TLM0101" ...
$ altitude :integer64 549 547 563 560 544
$ grounded : logi FALSE FALSE TRUE TRUE FALSE
$ temperature: num 71.8 71.8 71.8 71.7 71.7
Parameters
Parameter | Description | Type | Default |
---|---|---|---|
x |
data | data.frame (or list of) |
none |
bucket |
target bucket name | character |
none |
batchSize |
batch size | numeric |
5000 |
precision |
timestamp precision | character (one of s , ms , us , ns ) |
none |
measurementCol |
measurement column name | character |
"_measurement" |
tagCols |
tags column names | character |
NULL |
fieldCols |
fields column names | character |
c("_field"="_value") |
timeCol |
time column name | character |
"_time" |
object |
output object | character |
NULL |
Supported time column value types: nanotime
, POSIXct
.
Response is either NULL
on success, or errorr otherwise.
Note: default fieldCols
value is suitable for writing back unpivoted data retrieved from InfluxDB before. For usual tables (“pivoted” in Flux world), fieldCols
should be unnamed list, eg. c("humidity", "temperature", ...)
.
R type | InfluxDB type |
---|---|
character |
string |
integer , integer64 |
int |
numeric |
float |
logical |
bool |
nanotime , POSIXct |
time |
To preview how input data are serialized to InfluxDB line protocol, pass the name of object to receive the output as object
parameter value.
It changes write
to dry-run operation (nothing is sent to the database). The object will be assigned to the calling environment.
This option is intended for debugging purposes.
data <- ...
response <- client$write(data, bucket = "my-bucket", precision = "us",
measurementCol = "name",
tagCols = c("region", "sensor_id"),
fieldCols = c("altitude", "temperature"),
timeCol = "time",
object = "lp")
lp
Sample output:
> print(lp)
[[1]]
[1] "airSensors,region=south,sensor_id=TLM0101 altitude=549i,temperature=71.7844100 1623232361000000"
[2] "airSensors,region=south,sensor_id=TLM0101 altitude=547i,temperature=71.7684399 1623232371000000"
[3] "airSensors,region=south,sensor_id=TLM0101 altitude=563i,temperature=71.7819928 1623232381000000"
[4] "airSensors,region=south,sensor_id=TLM0101 altitude=560i,temperature=71.7487767 1623232391000000"
[5] "airSensors,region=south,sensor_id=TLM0101 altitude=544i,temperature=71.7335579 1623232401000000"
By default, client will not retry failed writes. To instantiate a client with retry support, pass an instance of RetryOptions
, eg:
client <- InfluxDBClient$new(url = "http://localhost:8086",
token = "my-token",
org = "my-org",
retryOptions = RetryOptions$new(maxAttempts = 3))
For retry strategy with default options just pass TRUE
as retryOptions
parameter value:
client <- InfluxDBClient$new(url = "http://localhost:8086",
token = "my-token",
org = "my-org",
retryOptions = TRUE)
Retryable InfluxDB write errors are 429
and 503
status codes. The retry strategy implements exponential backoff algorithm, customizable with RetryOptions
.
Use health
method to get the health status.
client <- InfluxDBClient$new(url = "http://localhost:8086",
token = "my-token",
org = "my-org")
check <- client$health()
Response is list with health information elements (name
, status
, version
, commit
) or error.
Use ready
method to get the readiness status.
client <- InfluxDBClient$new(url = "http://localhost:8086",
token = "my-token",
org = "my-org")
check <- client$ready()
Response is a list with status elements (status
, started
, up
) or error.
Contributions are most welcome. The fastest way to get something fixed is to open a PR.
The client is available as open source under the terms of the MIT License.