geeCRT is an R package for implementing the bias-corrected generalized estimating equations in analyzing cluster randomized trials.
Population-averaged models have been increasingly used in the design and analysis of cluster randomized trials (CRTs). To facilitate the applications of population-averaged models in CRTs, we implement the generalized estimating equations (GEE) and matrix-adjusted estimating equations (MAEE) approaches to jointly estimate the marginal mean models correlation models both for general CRTs and stepped wedge CRTs.
Despite the general GEE/MAEE approach, we also implement a fast cluster-period GEE method specifically for stepped wedge CRTs with large and variable cluster-period sizes. The individual-level GEE/MAEE approach becomes computationally infeasible in this setting due to inversion of high-dimensional covariance matrices and the enumeration of a high-dimensional design matrix for the correlation estimation equations. The package gives a simple and efficient estimating equations approach based on the cluster-period means to estimate the intervention effects as well as correlation parameters.
In addition, the package also provides functions for generating correlated binary data with specific mean vector and correlation matrix based on the multivariate probit method (Emrich and Piedmonte 1991) or the conditional linear family method (Qaqish 2003). These two functions facilitate generating correlated binary data in future simulation studies.
geemaee()
example: matrix-adjusted GEE for estimating the mean and correlation parameters in CRTsThe geemaee()
function implements the matrix-adjusted GEE or regular GEE developed for analyzing cluster randomized trials (CRTs). It provides valid estimation and inference for the treatment effect and intraclass correlation parameters within the population-averaged modeling framework. The program allows for flexible marginal mean model specifications. The program also offers bias-corrected intraclass correlation coefficient (ICC) estimates as well as bias-corrected sandwich variances for both the treatment effect parameter and the ICC parameters. The technical details of the matrix-adjusted GEE approach are provided in (Preisser, Lu, and Qaqish 2008) and (Li, Turner, and Preisser 2018).
For the individual-level data, we use the geemaee()
function to estimate the marginal mean and correlation parameters in CRTs. We use two simulated stepped wedge CRT datasets with true nested exchangeable correlation structure to illustrate the geemaee()
function examples.
period1 | period2 | period3 | period4 | treatment | id | period | y_bin | y_con |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | -0.5728721 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1.0462372 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0.6033255 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | -0.8680703 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | -1.8845704 |
0 | 1 | 0 | 0 | 1 | 1 | 2 | 0 | -0.5572751 |
We first create an auxiliary function createzCrossSec()
to help create the design matrix for the estimating equations of the correlation parameters. We then collect design matrix X
for the mean parameters with five period indicators and the treatment indicator.
function (m) {
createzCrossSec =
NULL
Z = dim(m)[1]
n =
for (i in 1:n) {
0 = 1; alpha_1 = 2; n_i = c(m[i, ]); n_length = length(n_i)
alpha_ matrix(alpha_1, sum(n_i), sum(n_i))
POS = 0; loc2 = 0
loc1 =
for (s in 1:n_length) {
n_i[s]; loc1 = loc2 + 1; loc2 = loc1 + n_t - 1
n_t =
for (k in loc1:loc2) {
for (j in loc1:loc2) {
if (k != j) { POS[k, j] = alpha_0 } else { POS[k, j] = 0 }}}}
diag(2); z_c = NULL
zrow =
for (j in 1:(sum(n_i) - 1)) {
for (k in (j + 1):sum(n_i)) {z_c = rbind(z_c, zrow[POS[j,k],])}}
rbind(Z, z_c) }
Z =
return(Z)}
We implement the geemaee()
function on both the continuous outcome and binary outcome, and consider both matrix-adjusted estimating equations (MAEE) with alpadj = TRUE
and uncorrected generalized estimating equations (GEE) with alpadj = FALSE
. For the shrink
argument, we use the "ALPHA"
method to tune step sizes and focus on using estimated variances in the correlation estimating equations rather than using unit variances by specifying makevone = FALSE
.
sampleSWCRTSmall
sampleSWCRT =
### Individual-level id, period, outcome, and design matrix
sampleSWCRT$id; period = sampleSWCRT$period;
id = as.matrix(sampleSWCRT[, c('period1', 'period2', 'period3', 'period4', 'treatment')])
X = as.matrix(table(id, period)); n = dim(m)[1]; t = dim(m)[2]
m =
### design matrix for correlation parameters
createzCrossSec(m)
Z =
### (1) Matrix-adjusted estimating equations and GEE
### on continuous outcome with nested exchangeable correlation structure
### MAEE
geemaee(y = sampleSWCRT$y_con,
est_maee_ind_con =X = X, id = id, Z = Z,
family = "continuous",
maxiter = 500, epsilon = 0.001,
printrange = TRUE, alpadj = TRUE,
shrink = "ALPHA", makevone = FALSE)
### GEE
geemaee(y = sampleSWCRT$y_con,
est_uee_ind_con =X = X, id = id, Z = Z,
family = "continuous",
maxiter = 500, epsilon = 0.001,
printrange = TRUE, alpadj = FALSE,
shrink = "ALPHA", makevone = FALSE)
### (2) Matrix-adjusted estimating equations and GEE
### on binary outcome with nested exchangeable correlation structure
### MAEE
geemaee(y = sampleSWCRT$y_bin,
est_maee_ind_bin =X = X, id = id, Z = Z,
family = "binomial",
maxiter = 500, epsilon = 0.001,
printrange = TRUE, alpadj = TRUE,
shrink = "ALPHA", makevone = FALSE)
print(est_maee_ind_bin)
## GEE for correlated Gaussian data
## Number of Iterations: 7
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7731496 0.2861811 0.2397046 0.2507701 0.2623524 0.2528516
## [2,] 1 -0.5067925 0.3163229 0.3125495 0.3364462 0.3626966 0.3340832
## [3,] 2 -0.6159656 0.4107850 0.5793391 0.6398733 0.7076154 0.6341025
## [4,] 3 -0.5932682 0.5956314 0.5498687 0.6043812 0.6650312 0.6087172
## [5,] 4 -0.9959081 0.4904630 0.5373051 0.5918909 0.6525862 0.5889413
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.09615638 0.03212815 0.03375024 0.03546144 0.03373575
## [2,] 1 0.03369215 0.03077853 0.03223000 0.03375486 0.03224127
### GEE
geemaee(y = sampleSWCRT$y_bin,
est_uee_ind_bin =X = X, id = id, Z = Z,
family = "binomial",
maxiter = 500, epsilon = 0.001,
printrange = TRUE, alpadj = FALSE,
shrink = "ALPHA", makevone = FALSE)
Then we have the following output:
# MAEE for continuous outcome
print(est_maee_ind_con)
## GEE for correlated Gaussian data
## Number of Iterations: 6
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.1563400 0.1233724 0.11343910 0.1185200 0.1238356 0.1185676
## [2,] 1 0.2598417 0.1396584 0.15564306 0.1665805 0.1783248 0.1655108
## [3,] 2 0.2750434 0.1744216 0.09769357 0.1056224 0.1143643 0.1037000
## [4,] 3 0.3265847 0.2269849 0.20527795 0.2202021 0.2363784 0.2191884
## [5,] 4 -0.1846654 0.1916254 0.14636555 0.1592412 0.1733169 0.1587060
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.07335831 0.0385460 0.04035981 0.04226387 0.04042324
## [2,] 1 0.03210581 0.0160329 0.01683282 0.01767569 0.01684501
# GEE for continuous outcome
print(est_uee_ind_con)
## GEE for correlated Gaussian data
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.1558990 0.1174052 0.11335326 0.1184565 0.1237977 0.1185069
## [2,] 1 0.2600341 0.1331291 0.15660456 0.1676591 0.1795345 0.1666850
## [3,] 2 0.2744039 0.1658703 0.09732366 0.1052335 0.1139553 0.1035272
## [4,] 3 0.3294253 0.2163095 0.20723038 0.2223924 0.2388282 0.2219057
## [5,] 4 -0.1857484 0.1828737 0.14726062 0.1602631 0.1744810 0.1599123
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.05304519 0.03055184 0.03200002 0.03352079 0.03204680
## [2,] 1 0.03019984 0.01459571 0.01532844 0.01610073 0.01533637
# MAEE for binary outcome
print(est_maee_ind_bin)
## GEE for correlated Gaussian data
## Number of Iterations: 7
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7731496 0.2861811 0.2397046 0.2507701 0.2623524 0.2528516
## [2,] 1 -0.5067925 0.3163229 0.3125495 0.3364462 0.3626966 0.3340832
## [3,] 2 -0.6159656 0.4107850 0.5793391 0.6398733 0.7076154 0.6341025
## [4,] 3 -0.5932682 0.5956314 0.5498687 0.6043812 0.6650312 0.6087172
## [5,] 4 -0.9959081 0.4904630 0.5373051 0.5918909 0.6525862 0.5889413
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.09615638 0.03212815 0.03375024 0.03546144 0.03373575
## [2,] 1 0.03369215 0.03077853 0.03223000 0.03375486 0.03224127
# GEE for binary outcome
print(est_uee_ind_bin)
## GEE for correlated Gaussian data
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7716253 0.2693959 0.2404336 0.2516128 0.2633193 0.2537330
## [2,] 1 -0.5040824 0.2983658 0.3111895 0.3349180 0.3609889 0.3328046
## [3,] 2 -0.6329007 0.3872258 0.5796856 0.6406367 0.7089294 0.6350176
## [4,] 3 -0.5905097 0.5625779 0.5551809 0.6102428 0.6715582 0.6149354
## [5,] 4 -0.9942493 0.4649278 0.5404357 0.5954360 0.6566581 0.5926395
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.06909291 0.02771682 0.02909958 0.03055802 0.02908517
## [2,] 1 0.03017185 0.02749985 0.02879600 0.03015777 0.02880640
period1 | period2 | period3 | period4 | period5 | treatment | id | period | y_bin | y_con |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0.6789756 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0.3776961 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -0.5519475 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -1.3102658 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0.2654200 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -0.3327958 |
########################################################################
### Example 2): simulated SW-CRT with larger cluster-period sizes (20~30)
########################################################################
## This will elapse longer.
sampleSWCRTLarge
sampleSWCRT =
### Individual-level id, period, outcome, and design matrix
sampleSWCRT$id; period = sampleSWCRT$period;
id = as.matrix(sampleSWCRT[, c('period1', 'period2', 'period3', 'period4', 'period5', 'treatment')])
X = as.matrix(table(id, period)); n = dim(m)[1]; t = dim(m)[2]
m =### design matrix for correlation parameters
createzCrossSec(m)
Z =
### (1) Matrix-adjusted estimating equations and GEE
### on continous outcome with nested exchangeable correlation structure
### MAEE
geemaee(y = sampleSWCRT$y_con,
est_maee_ind_con =X = X, id = id, Z = Z,
family = "continuous",
maxiter = 500, epsilon = 0.001,
printrange = TRUE, alpadj = TRUE,
shrink = "ALPHA", makevone = FALSE)
print(est_maee_ind_con)
## GEE for correlated Gaussian data
## Number of Iterations: 6
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.19231933 0.1048518 0.13134291 0.13722549 0.14337189 0.13681137
## [2,] 1 0.13855318 0.1089971 0.08559214 0.09070281 0.09631631 0.08746208
## [3,] 2 0.14135330 0.1246032 0.09471802 0.10092099 0.10769442 0.10114962
## [4,] 3 0.20421027 0.1452583 0.10146597 0.11068698 0.12096977 0.11160100
## [5,] 4 0.24716971 0.1684305 0.17177784 0.18728285 0.20433337 0.18746260
## [6,] 5 -0.08406266 0.1322349 0.13858326 0.15310151 0.16917367 0.15161045
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.09465688 0.02442148 0.02594067 0.02764751 0.02572805
## [2,] 1 0.03469533 0.01939519 0.02047886 0.02163615 0.02033902
### GEE
geemaee(y = sampleSWCRT$y_con,
est_uee_ind_con =X = X, id = id, Z = Z,
family = "continuous",
maxiter = 500, epsilon = 0.001,
printrange = TRUE, alpadj = FALSE,
shrink = "ALPHA", makevone = FALSE)
print(est_uee_ind_con)
## GEE for correlated Gaussian data
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.19190139 0.0996732 0.13145806 0.1373518 0.1435101 0.1369554
## [2,] 1 0.13814149 0.1035213 0.08569554 0.0908225 0.0964508 0.0875894
## [3,] 2 0.14064776 0.1185910 0.09464091 0.1008293 0.1075822 0.1010819
## [4,] 3 0.20346170 0.1383136 0.10102922 0.1101788 0.1203834 0.1111059
## [5,] 4 0.24633487 0.1602727 0.17211627 0.1876575 0.2047488 0.1878631
## [6,] 5 -0.08318282 0.1259570 0.13859217 0.1531209 0.1692063 0.1516836
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.08146407 0.02277749 0.02412259 0.02563971 0.02397541
## [2,] 1 0.03076420 0.01819528 0.01919418 0.02026185 0.01907859
### (2) Matrix-adjusted estimating equations and GEE
### on binary outcome with nested exchangeable correlation structure
### MAEE
geemaee(y = sampleSWCRT$y_bin,
est_maee_ind_bin =X = X, id = id, Z = Z,
family = "binomial",
maxiter = 500, epsilon = 0.001,
printrange = TRUE, alpadj = TRUE,
shrink = "ALPHA", makevone = FALSE)
print(est_maee_ind_bin)
## GEE for correlated Gaussian data
## Number of Iterations: 7
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.03457213 0.2241538 0.2392075 0.2498653 0.2610001 0.2473707
## [2,] 1 -0.34208716 0.2377506 0.2099319 0.2248003 0.2408185 0.2234759
## [3,] 2 -0.67675480 0.2823888 0.2743190 0.2961203 0.3199988 0.2912959
## [4,] 3 0.02997130 0.3119529 0.2000433 0.2183246 0.2399443 0.2115277
## [5,] 4 -0.42930737 0.3863814 0.1803455 0.1973792 0.2176510 0.1991261
## [6,] 5 -0.81816822 0.2919980 0.2800864 0.3069737 0.3365978 0.3032212
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.11496936 0.04117568 0.04294094 0.04478275 0.04281833
## [2,] 1 0.06242691 0.03481106 0.03630878 0.03787122 0.03624330
### GEE
geemaee(y = sampleSWCRT$y_bin,
est_uee_ind_bin =X = X, id = id, Z = Z,
family = "binomial",
maxiter = 500, epsilon = 0.001,
printrange = TRUE, alpadj = FALSE,
shrink = "ALPHA", makevone = FALSE)
print(est_uee_ind_bin)
## GEE for correlated Gaussian data
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.03532021 0.2130112 0.2391542 0.2498171 0.2609580 0.2472393
## [2,] 1 -0.34154512 0.2256323 0.2100181 0.2248984 0.2409307 0.2236170
## [3,] 2 -0.67644339 0.2683572 0.2745740 0.2964326 0.3203797 0.2916198
## [4,] 3 0.03090417 0.2963087 0.2002704 0.2186117 0.2403231 0.2117340
## [5,] 4 -0.43011798 0.3665889 0.1798608 0.1969091 0.2172283 0.1986538
## [6,] 5 -0.81865546 0.2768705 0.2801134 0.3070590 0.3367553 0.3032859
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.09974917 0.03709677 0.03868651 0.04034505 0.03857485
## [2,] 1 0.05686766 0.03128090 0.03262829 0.03403398 0.03256722
cpgeeSWD()
example: cluster-period GEE for estimating the marginal mean and correlation parameters in cross-sectional SW-CRTsThe cpgeeSWD()
function implements the cluster-period GEE developed for cross-sectional stepped wedge cluster randomized trials (SW-CRTs). It provides valid estimation and inference for the treatment effect and intraclass correlation parameters within the GEE framework, and is computationally efficient for analyzing SW-CRTs with large cluster sizes. The program currently only allows for a marginal mean model with discrete period effects and the intervention indicator without additional covariates. The program offers bias-corrected ICC estimates as well as bias-corrected sandwich variances for both the treatment effect parameter and the ICC parameters. The technical details of the cluster-period GEE approach are provided in (Li et al. 2021).
We summarize the individual-level simulated SW-CRT data to cluster-period data and use the cpgeeSWD()
function to estimate the marginal mean and correlation parameters on cluster-period means of binary outcome. We first transform the variables to get the cluster-period mean outcome y_cp
, mean parameters’ design matrix X_cp
as well as other arguments.
########################################################################
### Example 1): simulated SW-CRT with smaller cluster-period sizes (5~10)
########################################################################
sampleSWCRTSmall
sampleSWCRT =
### cluster-period id, period, outcome, and design matrix
### id, period, outcome
sampleSWCRT$id; period = sampleSWCRT$period; y = sampleSWCRT$y_bin
id = as.matrix(sampleSWCRT[, c('period1', 'period2', 'period3', 'period4', 'treatment')])
X =
as.matrix(table(id, period)); n = dim(m)[1]; t = dim(m)[2]
m = tapply(y,list(id,period), FUN=mean)
clp_mu = c(t(clp_mu))
y_cp =
### design matrix for correlation parameters
tapply(X[, t + 1], list(id, period), FUN=mean)
trt = c(t(trt))
trt =
tapply(period,list(id, period), FUN = mean); time = c(t(time))
time = matrix(0, n * t, t)
X_cp =
1
s =for (i in 1:n) { for (j in 1:t) { X_cp[s, time[s]] = 1; s = s + 1 }}
cbind(X_cp, trt); id_cp = rep(1:n, each = t); m_cp = c(t(m)) X_cp =
We implement the cpgeeSWD()
function on all the three choices of the correlation structure including "exchangeable"
, "nest_exch"
and "exp_decay"
. We consider both matrix-adjusted estimating equations (MAEE) with alpadj = TRUE
and uncorrected generalized estimating equations (GEE) with alpadj = FALSE
.
### cluster-period matrix-adjusted estimating equations (MAEE)
### with exchangeable, nested exchangeable and exponential decay correlation structures
# exponential
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_maee_exc =m = m_cp, corstr = "exchangeable",
alpadj = TRUE)
print(est_maee_exc)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7678066 0.2703014 0.2394340 0.2506194 0.2623375 0.2575649
## [2,] 1 -0.4899672 0.2929374 0.3175202 0.3415573 0.3679292 0.3465760
## [3,] 2 -0.6692544 0.3719364 0.5582006 0.6161580 0.6810928 0.6184389
## [4,] 3 -0.5967261 0.5257133 0.5630605 0.6178896 0.6788478 0.6378908
## [5,] 4 -0.9712041 0.4316492 0.5346929 0.5883089 0.6479608 0.5905832
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.07171243 0.03869076 0.04059179 0.0425914 0.04058122
# nested exchangeable
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_maee_nex =m = m_cp, corstr = "nest_exch",
alpadj = TRUE)
print(est_maee_nex)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 6
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7721492 0.2931061 0.2388699 0.2498629 0.2613680 0.2533655
## [2,] 1 -0.5036505 0.3216055 0.3154306 0.3394624 0.3658386 0.3392457
## [3,] 2 -0.6217770 0.4152335 0.5684728 0.6271700 0.6927849 0.6233328
## [4,] 3 -0.5994803 0.5967744 0.5467135 0.6003143 0.6598640 0.6091679
## [5,] 4 -0.9861662 0.4905999 0.5305528 0.5839117 0.6431778 0.5821589
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.10820010 0.04714541 0.04951304 0.05200312 0.04952131
## [2,] 1 0.05385588 0.03727153 0.03907559 0.04097119 0.03907206
# exponential decay
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_maee_ed =m = m_cp, corstr = "exp_decay",
alpadj = TRUE)
print(est_maee_ed)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 7
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7710180 0.2950154 0.2375293 0.2483319 0.2596306 0.2513006
## [2,] 1 -0.4988642 0.3224197 0.3145635 0.3388380 0.3654862 0.3397012
## [3,] 2 -0.6284311 0.4156078 0.5720337 0.6309674 0.6968561 0.6305171
## [4,] 3 -0.6140801 0.5986182 0.5461283 0.5997932 0.6594254 0.6124552
## [5,] 4 -0.9866725 0.4904297 0.5309814 0.5843712 0.6436174 0.5841529
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.1115235 0.0471122 0.04949153 0.05199521 0.04946812
## [2,] 1 0.6158576 0.1759633 0.18398863 0.19240603 0.18381541
### cluster-period GEE
### with exchangeable, nested exchangeable and exponential decay correlation structures
# exchangeable
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_uee_exc <-m = m_cp, corstr = "exchangeable",
alpadj = FALSE)
print(est_uee_exc)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7679011 0.2611220 0.2398530 0.2510783 0.2628390 0.2564986
## [2,] 1 -0.4911553 0.2852177 0.3154908 0.3393963 0.3656321 0.3424027
## [3,] 2 -0.6697603 0.3647602 0.5627720 0.6215708 0.6874968 0.6213395
## [4,] 3 -0.5940272 0.5205574 0.5631388 0.6182225 0.6795178 0.6340687
## [5,] 4 -0.9751028 0.4299957 0.5367262 0.5907718 0.6509467 0.5916886
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.05725857 0.03375491 0.03539291 0.03711574 0.03538186
# nested exchangeable
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_uee_nex <-m = m_cp, corstr = "nest_exch",
alpadj = FALSE)
print(est_uee_nex)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7701899 0.2728928 0.2396011 0.2507209 0.2623647 0.2544085
## [2,] 1 -0.4993131 0.2999219 0.3142455 0.3381255 0.3643392 0.3384140
## [3,] 2 -0.6424236 0.3867725 0.5686219 0.6278135 0.6940831 0.6244480
## [4,] 3 -0.5956930 0.5566382 0.5540211 0.6083847 0.6688445 0.6182629
## [5,] 4 -0.9836857 0.4595437 0.5345098 0.5883958 0.6483261 0.5870942
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.07500427 0.03992967 0.04189842 0.04396787 0.04190479
## [2,] 1 0.04814669 0.03293754 0.03450776 0.03615783 0.03449733
# exponential decay
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_uee_ed <-m = m_cp, corstr = 'exp_decay',
alpadj = FALSE)
print(est_uee_ed)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.7691313 0.2760920 0.2385661 0.2495298 0.2610036 0.2526378
## [2,] 1 -0.4960302 0.3027753 0.3135021 0.3375362 0.3639236 0.3382822
## [3,] 2 -0.6436889 0.3904936 0.5720324 0.6315468 0.6981797 0.6302718
## [4,] 3 -0.6064791 0.5635697 0.5533253 0.6077753 0.6683419 0.6196995
## [5,] 4 -0.9866876 0.4640753 0.5348939 0.5888701 0.6488594 0.5884695
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.0800789 0.04026846 0.04227077 0.04437711 0.04228027
## [2,] 1 0.7046177 0.17583729 0.18376072 0.19206554 0.18353049
########################################################################
### Example 2): simulated SW-CRT with larger cluster-period sizes (20~30)
########################################################################
sampleSWCRTLarge
sampleSWCRT =
### cluster-period id, period, outcome, and design matrix
### id, period, outcome
sampleSWCRT$id; period = sampleSWCRT$period; y = sampleSWCRT$y_bin
id = as.matrix(sampleSWCRT[, c('period1', 'period2', 'period3', 'period4', 'period5', 'treatment')])
X =
as.matrix(table(id, period)); n = dim(m)[1]; t = dim(m)[2]
m =tapply(y,list(id,period), FUN=mean)
clp_mu<- c(t(clp_mu))
y_cp <-
### design matrix for correlation parameters
tapply(X[, t + 1], list(id, period), FUN=mean)
trt <- c(t(trt))
trt <-
tapply(period,list(id, period), FUN = mean); time <- c(t(time))
time <- matrix(0, n * t, t)
X_cp <-
1
s =for(i in 1:n){for(j in 1:t){X_cp[s, time[s]] <- 1; s = s + 1}}
cbind(X_cp, trt); id_cp <- rep(1:n, each= t); m_cp <- c(t(m))
X_cp <-
### cluster-period matrix-adjusted estimating equations (MAEE)
### with exchangeable, nested exchangeable and exponential decay correlation structures
# exponential
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_maee_exc <-m = m_cp, corstr = "exchangeable",
alpadj = TRUE)
print(est_maee_exc)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.03937150 0.1955148 0.2373442 0.2480663 0.2592915 0.2392651
## [2,] 1 -0.33407908 0.2022096 0.2200174 0.2352782 0.2517452 0.2396738
## [3,] 2 -0.67338220 0.2343484 0.2944134 0.3178251 0.3435471 0.3183472
## [4,] 3 0.04608714 0.2414272 0.2332480 0.2536047 0.2774156 0.2480103
## [5,] 4 -0.43352358 0.2901120 0.1710562 0.1877125 0.2079820 0.1965489
## [6,] 5 -0.82493433 0.1977208 0.2758767 0.3031771 0.3333531 0.3000391
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.07782417 0.03688003 0.03829676 0.03976975 0.03827983
# nested exchangeable
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_maee_nex <-m = m_cp, corstr = "nest_exch",
alpadj = TRUE)
print(est_maee_nex)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.03432555 0.2278441 0.2393377 0.2499941 0.2611267 0.2479004
## [2,] 1 -0.34293068 0.2424034 0.2082967 0.2231294 0.2391131 0.2212194
## [3,] 2 -0.67730319 0.2887517 0.2713904 0.2930314 0.3167289 0.2876482
## [4,] 3 0.02825126 0.3212402 0.1938752 0.2119627 0.2334399 0.2046802
## [5,] 4 -0.42990720 0.3990553 0.1849263 0.2025603 0.2234539 0.2035330
## [6,] 5 -0.81687942 0.3038572 0.2835181 0.3107636 0.3407871 0.3069380
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.1201529 0.04650374 0.04831496 0.05019968 0.04830353
## [2,] 1 0.0584004 0.03424640 0.03557674 0.03696081 0.03558240
# exponential decay
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_maee_ed <-m = m_cp, corstr = "exp_decay",
alpadj = TRUE)
print(est_maee_ed)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 7
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.03340439 0.2236591 0.2415963 0.2524580 0.2638106 0.2513261
## [2,] 1 -0.32963269 0.2361087 0.2096366 0.2232709 0.2378969 0.2223343
## [3,] 2 -0.66086972 0.2793325 0.2679038 0.2864419 0.3065960 0.2820858
## [4,] 3 0.05215247 0.3068537 0.2126799 0.2276517 0.2447418 0.2231794
## [5,] 4 -0.38679195 0.3815072 0.1392210 0.1482120 0.1597143 0.1537140
## [6,] 5 -0.85944259 0.2843752 0.2312996 0.2529042 0.2766009 0.2467741
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.1143454 0.04222592 0.04384679 0.04553347 0.04380728
## [2,] 1 0.7000112 0.14390913 0.15014145 0.15665442 0.15034373
### cluster-period GEE
### with exchangeable, nested exchangeable and exponential decay correlation structures
# exchangeable
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_uee_exc <-m = m_cp, corstr = "exchangeable",
alpadj = FALSE)
print(est_uee_exc)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 3
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.03987191 0.1891780 0.2375607 0.2482853 0.2595112 0.2404060
## [2,] 1 -0.33454114 0.1959210 0.2189623 0.2341927 0.2506256 0.2376880
## [3,] 2 -0.67375572 0.2281604 0.2923708 0.3156737 0.3412787 0.3152896
## [4,] 3 0.04529970 0.2371119 0.2301168 0.2503246 0.2740128 0.2444258
## [5,] 4 -0.43427752 0.2857409 0.1708179 0.1874729 0.2077462 0.1952451
## [6,] 5 -0.82467526 0.1978609 0.2760276 0.3033256 0.3334993 0.3001943
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.07013385 0.03368912 0.03498342 0.03632918 0.03496968
# nested exchangeable
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_uee_nex <-m = m_cp, corstr = "nest_exch",
alpadj = FALSE)
print(est_uee_nex)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 3
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.03499108 0.2169350 0.2392903 0.2499507 0.2610881 0.2477876
## [2,] 1 -0.34245090 0.2305101 0.2084051 0.2232474 0.2392423 0.2213878
## [3,] 2 -0.67698816 0.2749173 0.2716631 0.2933535 0.3171098 0.2879913
## [4,] 3 0.02904193 0.3057033 0.1942266 0.2123667 0.2339216 0.2050350
## [5,] 4 -0.43058289 0.3793522 0.1842784 0.2018893 0.2227843 0.2028661
## [6,] 5 -0.81733511 0.2886977 0.2833499 0.3106202 0.3406770 0.3067671
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.10499225 0.04215716 0.04379742 0.04550421 0.04378621
## [2,] 1 0.05350042 0.03080632 0.03200335 0.03324877 0.03200919
# exponential decay
cpgeeSWD(y = y_cp, X = X_cp, id = id_cp,
est_uee_ed <-m = m_cp, corstr = 'exp_decay',
alpadj = FALSE)
print(est_uee_ed)
## GEE and MAEE for Cluster-Period Summaries
## Number of Iterations: 4
## Results for marginal mean parameters
## Beta Estimate MB-stderr BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 -0.03459151 0.2123822 0.2414782 0.2523416 0.2636966 0.2510466
## [2,] 1 -0.33001054 0.2238965 0.2100290 0.2237648 0.2385050 0.2228663
## [3,] 2 -0.66158744 0.2652147 0.2697183 0.2886630 0.3092792 0.2844552
## [4,] 3 0.05115744 0.2911203 0.2127361 0.2279738 0.2454327 0.2231941
## [5,] 4 -0.38956628 0.3612911 0.1403145 0.1497434 0.1617831 0.1547516
## [6,] 5 -0.85722995 0.2692278 0.2336074 0.2555548 0.2796454 0.2493893
##
## Results for correlation parameters
## Alpha Estimate BC0-stderr BC1-stderr BC2-stderr BC3-stderr
## [1,] 0 0.0989716 0.03850721 0.03997936 0.04151109 0.03993102
## [2,] 1 0.7279137 0.13726650 0.14328210 0.14956972 0.14351625
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] geeCRT_0.1.1
##
## loaded via a namespace (and not attached):
## [1] mvtnorm_1.1-1 digest_0.6.27 MASS_7.3-53 magrittr_2.0.1 evaluate_0.14
## [6] rootSolve_1.8.2.1 highr_0.8 rlang_0.4.10 stringi_1.5.3 rmarkdown_2.7
## [11] tools_4.0.3 stringr_1.4.0 xfun_0.22 yaml_2.2.1 compiler_4.0.3
## [16] htmltools_0.5.1.1 knitr_1.31
Emrich, Lawrence J, and Marion R Piedmonte. 1991. “A Method for Generating High-Dimensional Multivariate Binary Variates.” The American Statistician 45 (4): 302–4.
Li, Fan, Elizabeth L Turner, and John S Preisser. 2018. “Sample Size Determination for Gee Analyses of Stepped Wedge Cluster Randomized Trials.” Biometrics 74 (4): 1450–8.
Li, Fan, Hengshi Yu, Paul J Rathouz, Elizabeth L Turner, and John S Preisser. 2021. “Marginal modeling of cluster-period means and intraclass correlations in stepped wedge designs with binary outcomes.” Biostatistics, February. https://doi.org/10.1093/biostatistics/kxaa056.
Preisser, John S, Bing Lu, and Bahjat F Qaqish. 2008. “Finite Sample Adjustments in Estimating Equations and Covariance Estimators for Intracluster Correlations.” Statistics in Medicine 27 (27): 5764–85.
Qaqish, Bahjat F. 2003. “A Family of Multivariate Binary Distributions for Simulating Correlated Binary Variables with Specified Marginal Means and Correlations.” Biometrika 90 (2): 455–63.