In this tutorial, two unsupervised clustering algorithms from the funtimes
library are used to identify clusters of Australia’s sea level time series.
First, load the essential libraries for the analysis:
library(funtimes)
library(ggplot2)
library(gridExtra)
library(readxl)
library(reshape2)
The daily sea level data are available from 1993-2012 for 17 locations. The data are obtained from Maharaj, D’Urso, and Caido (2019) using the following link http://www.tsclustering.homepage.pt/index.php?p=3. Download Application7_3.zip
folder, where the Aus Sea Levels 17.xlsx
file contains the sea level records. Annual average is taken to convert the temporal resolution.
<- readxl::read_xlsx("Aus_Sea_Levels_17.xlsx", skip = 1, n_max = 7300, col_types = rep("numeric", 20))
d_org # yearly average
<- data.frame(aggregate(d_org[, 4:20], list(d_org$Year), FUN = 'mean', na.rm = TRUE)[, -1], row.names = unique(d_org$Year)) d
Below is the plot of annual time series of sea level for 17 locations:
<- reshape2::melt(t(d))
dlong names(dlong)[1:2] <- c("Location", "Year")
ggplot(dlong) + geom_line(aes(x = Year, y = value, color = Location), size = 1) +
ylab('Sea level (m)') +
theme_bw()
This plot demonstrates the variation in the sea levels across the locations. It can be seen that not all the time series are having a common trend since 1993. Grouping the locations with a common trend could benefit Australian government to assess and implement climate adaptation strategies for the impact of sea level rise on clustered locations.
The first function from the package to test is the sync_cluster
that groups the time series with the common linear trend. The window parameter w
is set here for number of slides in each window. If the number of years are not enough in the time series, this parameter is required to be set.
set.seed(123)
<- sync_cluster(d ~ t, Window = 3, B = 100)
Clus_sync # [1] "Cluster labels:"
# [1] 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0
# [1] "Number of single-element clusters (labeled with '0'): 4"
Clus_sync# $cluster
# [1] 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0
#
# $elements
# $elements$`Time series that each formed a separate cluster`
# [1] "Broome" "Cape.Fergusen" "Carnarvon" "Wyndham"
#
# $elements$`1`
# [1] "Booby.Island" "Brisbane" "Burnie" "Cocos.Island" "Darwin"
# [6] "Esperance" "Freemantle" "Hillarys" "Portland" "Spring.Bay"
# [11] "Sydney" "Thevenard" "Townsville"
#
#
# $estimate
# $estimate[[1]]
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -1.230297 0.2652816 -4.637704 2.045787e-04
# t 2.343424 0.4429056 5.291023 4.966844e-05
#
#
# $pval
# $pval[[1]]
# [1] 0.06
#
#
# $statistic
# $statistic[[1]]
# Test statistic
# 0.2646767
#
#
# $ar_order
# $ar_order[[1]]
# 1 2 4 7 8 9 10 11 12 13 14 15 16
# ar.order 0 12 11 0 12 0 0 0 0 0 0 11 1
#
#
# $window_used
# $window_used[[1]]
# 1 2 4 7 8 9 10 11 12 13 14 15 16
# Window 3 3 3 3 3 3 3 3 3 3 3 3 3
#
#
# $all_considered_windows
# $all_considered_windows[[1]]
# Window Statistic p-value Asympt. p-value
# 3 0.2646767 0.06 0.4608282
#
#
# $WAVK_obs
# $WAVK_obs[[1]]
# [1] 0.212437377 -0.009172104 -0.011933680 -0.158881835 -0.017872773
# [6] -0.017770762 0.199031778 0.060299520 -0.081576400 -0.100934598
# [11] 0.099766572 -0.007834631 0.099118234
Total 13 locations are clustered with a common linear trend, while the remaining four are not tied to any of the location with a common trend.
Below is the plot of clustered time series of sea level:
for(i in 0:max(Clus_sync$cluster)) {
assign(paste('py', i, sep = ''),
ggplot(melt(t(d[, Clus_sync$cluster == i]))) +
geom_line(aes(x = Var2,y = value,color = Var1),size = 1) +
ylab('Sea level (m)') + xlab('Year') +
theme_bw() + ggtitle(paste('Cluster',i)) +
theme(axis.text = element_text(size = 13), axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15), legend.text = element_text(size = 10),
legend.title = element_blank(), legend.key.size = unit(0.3, "cm")))
}grid.arrange(py0, py1)
Here, Cluster 0
indicates the locations which are not tied to the locations with a common linear trend, while Cluster 1
shows the time series of locations with a common linear trend.
The BICC
function applies an unsupervised spatiotemporal clustering algorithm, TRUST, from Ciampi, Appice, and Malerba (2010). It utilizes both the CSlideCluster
and CWindowCluster
functions for clustering. There are few critical parameters to be considered before implementing the BICC
function. The parameter p
indicates the number of layers (i.e., number of observations in a time series) within each slide, while window w
is the number consecutive slides. The size of slide and window are set manually. The slide s
refers to the number of steps required to shift the window.
<- BICC(as.matrix(d), p = 5, w = 4, s = 4)
Clus_BICC
Clus_BICC# $delta.opt
# [1] 1.405918
#
# $epsilon.opt
# [1] 0.25
#
# $clusters
# Booby.Island Brisbane Broome Burnie Cape.Fergusen Carnarvon
# Window_1 1 1 1 1 1 1
# Cocos.Island Darwin Esperance Freemantle Hillarys Portland Spring.Bay
# Window_1 1 1 1 1 1 1 1
# Sydney Thevenard Townsville Wyndham
# Window_1 1 1 1 1
#
# $IC
# [,1] [,2] [,3] [,4]
# [1,] 244.1827 244.1827 244.1827 244.1827
# [2,] 244.1827 244.1827 244.1827 244.1827
# [3,] 244.1827 244.1827 244.1827 244.1827
# [4,] 244.1827 244.1827 244.1827 244.1827
# [5,] 244.1827 244.1827 244.1827 244.1827
#
# $delta.all
# [1] 1.405918 8.435507 15.465096 22.494685 29.524274
#
# $epsilon.all
# [1] 0.25 0.50 0.75 1.00
The algorithm detected only one cluster.
This vignette belongs to R package funtimes
. If you wish to cite this page, please cite the package:
citation("funtimes")
#
# To cite package 'funtimes' in publications use:
#
# Vyacheslav Lyubchich and Yulia R. Gel (2022). funtimes: Functions for
# Time Series Analysis. R package version 8.2.
#
# A BibTeX entry for LaTeX users is
#
# @Manual{,
# title = {funtimes: Functions for Time Series Analysis},
# author = {Vyacheslav Lyubchich and Yulia R. Gel},
# year = {2022},
# note = {R package version 8.2},
# }