Provides the probability density function (PDF), cumulative distribution function (CDF), and the partial derivatives of the PDF of the diffusion decision model (DDM; e.g., Ratcliff & McKoon, 2008, <doi:10.1162/neco.2008.12-06-420>) with across-trial variability in the drift rate. Because the PDF, its partial derivatives, and the CDF of the DDM both contain an infinite sum, they need to be approximated. 'fddm' implements all published approximations (Navarro & Fuss, 2009, <doi:10.1016/j.jmp.2009.02.003>; Gondan, Blurton, & Kesselmeier, 2014, <doi:10.1016/j.jmp.2014.05.002>; Blurton, Kesselmeier, & Gondan, 2017, <doi:10.1016/j.jmp.2016.11.003>; Hartmann & Klauer, 2021, <doi:10.1016/j.jmp.2021.102550>) plus new approximations. All approximations are implemented purely in 'C++' providing faster speed than existing packages.
Version: | 0.5-1 |
Depends: | R (≥ 3.5.0) |
Imports: | Rcpp (≥ 1.0.1) |
LinkingTo: | Rcpp |
Suggests: | rtdists, RWiener, ggplot2, reshape2, testthat, knitr, rmarkdown, microbenchmark, ggnewscale, ggforce, WienR |
Published: | 2022-03-15 |
Author: | Kendal B. Foster [aut], Henrik Singmann [ctb, cre] |
Maintainer: | Henrik Singmann <singmann at gmail.com> |
BugReports: | https://github.com/rtdists/fddm/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://github.com/rtdists/fddm |
NeedsCompilation: | yes |
SystemRequirements: | C++11 |
Materials: | README NEWS |
CRAN checks: | fddm results |
Reference manual: | fddm.pdf |
Vignettes: |
Benchmark Testing Fitting Example Using dfddm Mathematical Description of Methods Description of Methods in pfddm Validity of Methods |
Package source: | fddm_0.5-1.tar.gz |
Windows binaries: | r-devel: fddm_0.5-1.zip, r-release: fddm_0.5-1.zip, r-oldrel: fddm_0.5-1.zip |
macOS binaries: | r-release (arm64): fddm_0.5-1.tgz, r-oldrel (arm64): fddm_0.5-1.tgz, r-release (x86_64): fddm_0.5-1.tgz, r-oldrel (x86_64): fddm_0.5-1.tgz |
Old sources: | fddm archive |
Please use the canonical form https://CRAN.R-project.org/package=fddm to link to this page.