When working with data you must:
Figure out what you want to do.
Describe those tasks in the form of a computer program.
Execute the program.
The dplyr package makes these steps fast and easy:
By constraining your options, it helps you think about your data manipulation challenges.
It provides simple “verbs”, functions that correspond to the most common data manipulation tasks, to help you translate your thoughts into code.
It uses efficient backends, so you spend less time waiting for the computer.
This document introduces you to dplyr’s basic set of tools, and shows
you how to apply them to data frames. dplyr also supports databases via
the dbplyr package, once you’ve installed, read
vignette("dbplyr")
to learn more.
To explore the basic data manipulation verbs of dplyr, we’ll use the
dataset starwars
. This dataset contains 87 characters and
comes from the Star Wars API, and is
documented in ?starwars
dim(starwars)
#> [1] 87 14
starwars#> # A tibble: 87 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Darth Va… 202 136 none white yellow 41.9 male mascu…
#> # … with 83 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
Note that starwars
is a tibble, a modern reimagining of
the data frame. It’s particularly useful for large datasets because it
only prints the first few rows. You can learn more about tibbles at https://tibble.tidyverse.org; in particular you can
convert data frames to tibbles with as_tibble()
.
dplyr aims to provide a function for each basic verb of data manipulation. These verbs can be organised into three categories based on the component of the dataset that they work with:
filter()
chooses rows based on column values.slice()
chooses rows based on location.arrange()
changes the order of the rows.select()
changes whether or not a column is
included.rename()
changes the name of columns.mutate()
changes the values of columns and creates new
columns.relocate()
changes the order of the columns.summarise()
collapses a group into a single row.All of the dplyr functions take a data frame (or tibble) as the first
argument. Rather than forcing the user to either save intermediate
objects or nest functions, dplyr provides the %>%
operator from magrittr. x %>% f(y)
turns into
f(x, y)
so the result from one step is then “piped” into
the next step. You can use the pipe to rewrite multiple operations that
you can read left-to-right, top-to-bottom (reading the pipe operator as
“then”).
filter()
filter()
allows you to select a subset of rows in a data
frame. Like all single verbs, the first argument is the tibble (or data
frame). The second and subsequent arguments refer to variables within
that data frame, selecting rows where the expression is
TRUE
.
For example, we can select all character with light skin color and brown eyes with:
%>% filter(skin_color == "light", eye_color == "brown")
starwars #> # A tibble: 7 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Leia Org… 150 49 brown light brown 19 fema… femin…
#> 2 Biggs Da… 183 84 black light brown 24 male mascu…
#> 3 Cordé 157 NA brown light brown NA fema… femin…
#> 4 Dormé 165 NA brown light brown NA fema… femin…
#> # … with 3 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
This is roughly equivalent to this base R code:
$skin_color == "light" & starwars$eye_color == "brown", ] starwars[starwars
arrange()
arrange()
works similarly to filter()
except that instead of filtering or selecting rows, it reorders them. It
takes a data frame, and a set of column names (or more complicated
expressions) to order by. If you provide more than one column name, each
additional column will be used to break ties in the values of preceding
columns:
%>% arrange(height, mass)
starwars #> # A tibble: 87 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Yoda 66 17 white green brown 896 male mascu…
#> 2 Ratts Ty… 79 15 none grey, blue unknown NA male mascu…
#> 3 Wicket S… 88 20 brown brown brown 8 male mascu…
#> 4 Dud Bolt 94 45 none blue, grey yellow NA male mascu…
#> # … with 83 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
Use desc()
to order a column in descending order:
%>% arrange(desc(height))
starwars #> # A tibble: 87 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Yarael P… 264 NA none white yellow NA male mascu…
#> 2 Tarfful 234 136 brown brown blue NA male mascu…
#> 3 Lama Su 229 88 none grey black NA male mascu…
#> 4 Chewbacca 228 112 brown unknown blue 200 male mascu…
#> # … with 83 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
slice()
slice()
lets you index rows by their (integer)
locations. It allows you to select, remove, and duplicate rows.
We can get characters from row numbers 5 through 10.
%>% slice(5:10)
starwars #> # A tibble: 6 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Leia Org… 150 49 brown light brown 19 fema… femin…
#> 2 Owen Lars 178 120 brown, gr… light blue 52 male mascu…
#> 3 Beru Whi… 165 75 brown light blue 47 fema… femin…
#> 4 R5-D4 97 32 <NA> white, red red NA none mascu…
#> # … with 2 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
It is accompanied by a number of helpers for common use cases:
slice_head()
and slice_tail()
select the
first or last rows.%>% slice_head(n = 3)
starwars #> # A tibble: 3 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
#> # vehicles <list>, starships <list>
slice_sample()
randomly selects rows. Use the option
prop to choose a certain proportion of the cases.%>% slice_sample(n = 5)
starwars #> # A tibble: 5 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Dud Bolt 94 45 none blue, grey yellow NA male mascu…
#> 2 Bossk 190 113 none green red 53 male mascu…
#> 3 Shaak Ti 178 57 none red, blue,… black NA fema… femin…
#> 4 Dormé 165 NA brown light brown NA fema… femin…
#> # … with 1 more row, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
%>% slice_sample(prop = 0.1)
starwars #> # A tibble: 8 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Qui-Gon … 193 89 brown fair blue 92 male mascu…
#> 2 Dexter J… 198 102 none brown yellow NA male mascu…
#> 3 R4-P17 96 NA none silver, r… red, blue NA none femin…
#> 4 Lama Su 229 88 none grey black NA male mascu…
#> # … with 4 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
Use replace = TRUE
to perform a bootstrap sample. If
needed, you can weight the sample with the weight
argument.
slice_min()
and slice_max()
select rows
with highest or lowest values of a variable. Note that we first must
choose only the values which are not NA.%>%
starwars filter(!is.na(height)) %>%
slice_max(height, n = 3)
#> # A tibble: 3 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Yarael P… 264 NA none white yellow NA male mascu…
#> 2 Tarfful 234 136 brown brown blue NA male mascu…
#> 3 Lama Su 229 88 none grey black NA male mascu…
#> # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
#> # vehicles <list>, starships <list>
select()
Often you work with large datasets with many columns but only a few
are actually of interest to you. select()
allows you to
rapidly zoom in on a useful subset using operations that usually only
work on numeric variable positions:
# Select columns by name
%>% select(hair_color, skin_color, eye_color)
starwars #> # A tibble: 87 × 3
#> hair_color skin_color eye_color
#> <chr> <chr> <chr>
#> 1 blond fair blue
#> 2 <NA> gold yellow
#> 3 <NA> white, blue red
#> 4 none white yellow
#> # … with 83 more rows
# Select all columns between hair_color and eye_color (inclusive)
%>% select(hair_color:eye_color)
starwars #> # A tibble: 87 × 3
#> hair_color skin_color eye_color
#> <chr> <chr> <chr>
#> 1 blond fair blue
#> 2 <NA> gold yellow
#> 3 <NA> white, blue red
#> 4 none white yellow
#> # … with 83 more rows
# Select all columns except those from hair_color to eye_color (inclusive)
%>% select(!(hair_color:eye_color))
starwars #> # A tibble: 87 × 11
#> name height mass birth_year sex gender homeworld species films vehicles
#> <chr> <int> <dbl> <dbl> <chr> <chr> <chr> <chr> <lis> <list>
#> 1 Luke Sk… 172 77 19 male mascu… Tatooine Human <chr> <chr>
#> 2 C-3PO 167 75 112 none mascu… Tatooine Droid <chr> <chr>
#> 3 R2-D2 96 32 33 none mascu… Naboo Droid <chr> <chr>
#> 4 Darth V… 202 136 41.9 male mascu… Tatooine Human <chr> <chr>
#> # … with 83 more rows, and 1 more variable: starships <list>
# Select all columns ending with color
%>% select(ends_with("color"))
starwars #> # A tibble: 87 × 3
#> hair_color skin_color eye_color
#> <chr> <chr> <chr>
#> 1 blond fair blue
#> 2 <NA> gold yellow
#> 3 <NA> white, blue red
#> 4 none white yellow
#> # … with 83 more rows
There are a number of helper functions you can use within
select()
, like starts_with()
,
ends_with()
, matches()
and
contains()
. These let you quickly match larger blocks of
variables that meet some criterion. See ?select
for more
details.
You can rename variables with select()
by using named
arguments:
%>% select(home_world = homeworld)
starwars #> # A tibble: 87 × 1
#> home_world
#> <chr>
#> 1 Tatooine
#> 2 Tatooine
#> 3 Naboo
#> 4 Tatooine
#> # … with 83 more rows
But because select()
drops all the variables not
explicitly mentioned, it’s not that useful. Instead, use
rename()
:
%>% rename(home_world = homeworld)
starwars #> # A tibble: 87 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Darth Va… 202 136 none white yellow 41.9 male mascu…
#> # … with 83 more rows, and 5 more variables: home_world <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
mutate()
Besides selecting sets of existing columns, it’s often useful to add
new columns that are functions of existing columns. This is the job of
mutate()
:
%>% mutate(height_m = height / 100)
starwars #> # A tibble: 87 × 15
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Darth Va… 202 136 none white yellow 41.9 male mascu…
#> # … with 83 more rows, and 6 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>, height_m <dbl>
We can’t see the height in meters we just calculated, but we can fix that using a select command.
%>%
starwars mutate(height_m = height / 100) %>%
select(height_m, height, everything())
#> # A tibble: 87 × 15
#> height_m height name mass hair_color skin_color eye_color birth_year sex
#> <dbl> <int> <chr> <dbl> <chr> <chr> <chr> <dbl> <chr>
#> 1 1.72 172 Luke S… 77 blond fair blue 19 male
#> 2 1.67 167 C-3PO 75 <NA> gold yellow 112 none
#> 3 0.96 96 R2-D2 32 <NA> white, bl… red 33 none
#> 4 2.02 202 Darth … 136 none white yellow 41.9 male
#> # … with 83 more rows, and 6 more variables: gender <chr>, homeworld <chr>,
#> # species <chr>, films <list>, vehicles <list>, starships <list>
dplyr::mutate()
is similar to the base
transform()
, but allows you to refer to columns that you’ve
just created:
%>%
starwars mutate(
height_m = height / 100,
BMI = mass / (height_m^2)
%>%
) select(BMI, everything())
#> # A tibble: 87 × 16
#> BMI name height mass hair_color skin_color eye_color birth_year sex
#> <dbl> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
#> 1 26.0 Luke Skyw… 172 77 blond fair blue 19 male
#> 2 26.9 C-3PO 167 75 <NA> gold yellow 112 none
#> 3 34.7 R2-D2 96 32 <NA> white, bl… red 33 none
#> 4 33.3 Darth Vad… 202 136 none white yellow 41.9 male
#> # … with 83 more rows, and 7 more variables: gender <chr>, homeworld <chr>,
#> # species <chr>, films <list>, vehicles <list>, starships <list>,
#> # height_m <dbl>
If you only want to keep the new variables, use
transmute()
:
%>%
starwars transmute(
height_m = height / 100,
BMI = mass / (height_m^2)
)#> # A tibble: 87 × 2
#> height_m BMI
#> <dbl> <dbl>
#> 1 1.72 26.0
#> 2 1.67 26.9
#> 3 0.96 34.7
#> 4 2.02 33.3
#> # … with 83 more rows
relocate()
Use a similar syntax as select()
to move blocks of
columns at once
%>% relocate(sex:homeworld, .before = height)
starwars #> # A tibble: 87 × 14
#> name sex gender homeworld height mass hair_color skin_color eye_color
#> <chr> <chr> <chr> <chr> <int> <dbl> <chr> <chr> <chr>
#> 1 Luke Skyw… male mascu… Tatooine 172 77 blond fair blue
#> 2 C-3PO none mascu… Tatooine 167 75 <NA> gold yellow
#> 3 R2-D2 none mascu… Naboo 96 32 <NA> white, bl… red
#> 4 Darth Vad… male mascu… Tatooine 202 136 none white yellow
#> # … with 83 more rows, and 5 more variables: birth_year <dbl>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
summarise()
The last verb is summarise()
. It collapses a data frame
to a single row.
%>% summarise(height = mean(height, na.rm = TRUE))
starwars #> # A tibble: 1 × 1
#> height
#> <dbl>
#> 1 174.
It’s not that useful until we learn the group_by()
verb
below.
You may have noticed that the syntax and function of all these verbs are very similar:
The first argument is a data frame.
The subsequent arguments describe what to do with the data frame.
You can refer to columns in the data frame directly without using
$
.
The result is a new data frame
Together these properties make it easy to chain together multiple simple steps to achieve a complex result.
These five functions provide the basis of a language of data
manipulation. At the most basic level, you can only alter a tidy data
frame in five useful ways: you can reorder the rows
(arrange()
), pick observations and variables of interest
(filter()
and select()
), add new variables
that are functions of existing variables (mutate()
), or
collapse many values to a summary (summarise()
).
%>%
The dplyr API is functional in the sense that function calls don’t have side-effects. You must always save their results. This doesn’t lead to particularly elegant code, especially if you want to do many operations at once. You either have to do it step-by-step:
<- group_by(starwars, species, sex)
a1 <- select(a1, height, mass)
a2 <- summarise(a2,
a3 height = mean(height, na.rm = TRUE),
mass = mean(mass, na.rm = TRUE)
)
Or if you don’t want to name the intermediate results, you need to wrap the function calls inside each other:
summarise(
select(
group_by(starwars, species, sex),
height, mass
),height = mean(height, na.rm = TRUE),
mass = mean(mass, na.rm = TRUE)
)#> Adding missing grouping variables: `species`, `sex`
#> `summarise()` has grouped output by 'species'. You can override using the
#> `.groups` argument.
#> # A tibble: 41 × 4
#> # Groups: species [38]
#> species sex height mass
#> <chr> <chr> <dbl> <dbl>
#> 1 Aleena male 79 15
#> 2 Besalisk male 198 102
#> 3 Cerean male 198 82
#> 4 Chagrian male 196 NaN
#> # … with 37 more rows
This is difficult to read because the order of the operations is from
inside to out. Thus, the arguments are a long way away from the
function. To get around this problem, dplyr provides the
%>%
operator from magrittr. x %>% f(y)
turns into f(x, y)
so you can use it to rewrite multiple
operations that you can read left-to-right, top-to-bottom (reading the
pipe operator as “then”):
%>%
starwars group_by(species, sex) %>%
select(height, mass) %>%
summarise(
height = mean(height, na.rm = TRUE),
mass = mean(mass, na.rm = TRUE)
)
The dplyr verbs can be classified by the type of operations they accomplish (we sometimes speak of their semantics, i.e., their meaning). It’s helpful to have a good grasp of the difference between select and mutate operations.
One of the appealing features of dplyr is that you can refer to
columns from the tibble as if they were regular variables. However, the
syntactic uniformity of referring to bare column names hides semantical
differences across the verbs. A column symbol supplied to
select()
does not have the same meaning as the same symbol
supplied to mutate()
.
Selecting operations expect column names and positions. Hence, when
you call select()
with bare variable names, they actually
represent their own positions in the tibble. The following calls are
completely equivalent from dplyr’s point of view:
# `name` represents the integer 1
select(starwars, name)
#> # A tibble: 87 × 1
#> name
#> <chr>
#> 1 Luke Skywalker
#> 2 C-3PO
#> 3 R2-D2
#> 4 Darth Vader
#> # … with 83 more rows
select(starwars, 1)
#> # A tibble: 87 × 1
#> name
#> <chr>
#> 1 Luke Skywalker
#> 2 C-3PO
#> 3 R2-D2
#> 4 Darth Vader
#> # … with 83 more rows
By the same token, this means that you cannot refer to variables from
the surrounding context if they have the same name as one of the
columns. In the following example, height
still represents
2, not 5:
<- 5
height select(starwars, height)
#> # A tibble: 87 × 1
#> height
#> <int>
#> 1 172
#> 2 167
#> 3 96
#> 4 202
#> # … with 83 more rows
One useful subtlety is that this only applies to bare names and to
selecting calls like c(height, mass)
or
height:mass
. In all other cases, the columns of the data
frame are not put in scope. This allows you to refer to contextual
variables in selection helpers:
<- "color"
name select(starwars, ends_with(name))
#> # A tibble: 87 × 3
#> hair_color skin_color eye_color
#> <chr> <chr> <chr>
#> 1 blond fair blue
#> 2 <NA> gold yellow
#> 3 <NA> white, blue red
#> 4 none white yellow
#> # … with 83 more rows
These semantics are usually intuitive. But note the subtle difference:
<- 5
name select(starwars, name, identity(name))
#> # A tibble: 87 × 2
#> name skin_color
#> <chr> <chr>
#> 1 Luke Skywalker fair
#> 2 C-3PO gold
#> 3 R2-D2 white, blue
#> 4 Darth Vader white
#> # … with 83 more rows
In the first argument, name
represents its own position
1
. In the second argument, name
is evaluated
in the surrounding context and represents the fifth column.
For a long time, select()
used to only understand column
positions. Counting from dplyr 0.6, it now understands column names as
well. This makes it a bit easier to program with
select()
:
<- c("name", "height")
vars select(starwars, all_of(vars), "mass")
#> # A tibble: 87 × 3
#> name height mass
#> <chr> <int> <dbl>
#> 1 Luke Skywalker 172 77
#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136
#> # … with 83 more rows
Mutate semantics are quite different from selection semantics.
Whereas select()
expects column names or positions,
mutate()
expects column vectors. We will set up a
smaller tibble to use for our examples.
<- starwars %>% select(name, height, mass) df
When we use select()
, the bare column names stand for
their own positions in the tibble. For mutate()
on the
other hand, column symbols represent the actual column vectors stored in
the tibble. Consider what happens if we give a string or a number to
mutate()
:
mutate(df, "height", 2)
#> # A tibble: 87 × 5
#> name height mass `"height"` `2`
#> <chr> <int> <dbl> <chr> <dbl>
#> 1 Luke Skywalker 172 77 height 2
#> 2 C-3PO 167 75 height 2
#> 3 R2-D2 96 32 height 2
#> 4 Darth Vader 202 136 height 2
#> # … with 83 more rows
mutate()
gets length-1 vectors that it interprets as new
columns in the data frame. These vectors are recycled so they match the
number of rows. That’s why it doesn’t make sense to supply expressions
like "height" + 10
to mutate()
. This amounts
to adding 10 to a string! The correct expression is:
mutate(df, height + 10)
#> # A tibble: 87 × 4
#> name height mass `height + 10`
#> <chr> <int> <dbl> <dbl>
#> 1 Luke Skywalker 172 77 182
#> 2 C-3PO 167 75 177
#> 3 R2-D2 96 32 106
#> 4 Darth Vader 202 136 212
#> # … with 83 more rows
In the same way, you can unquote values from the context if these values represent a valid column. They must be either length 1 (they then get recycled) or have the same length as the number of rows. In the following example we create a new vector that we add to the data frame:
<- seq(1, nrow(df))
var mutate(df, new = var)
#> # A tibble: 87 × 4
#> name height mass new
#> <chr> <int> <dbl> <int>
#> 1 Luke Skywalker 172 77 1
#> 2 C-3PO 167 75 2
#> 3 R2-D2 96 32 3
#> 4 Darth Vader 202 136 4
#> # … with 83 more rows
A case in point is group_by()
. While you might think it
has select semantics, it actually has mutate semantics. This is quite
handy as it allows to group by a modified column:
group_by(starwars, sex)
#> # A tibble: 87 × 14
#> # Groups: sex [5]
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Darth Va… 202 136 none white yellow 41.9 male mascu…
#> # … with 83 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
group_by(starwars, sex = as.factor(sex))
#> # A tibble: 87 × 14
#> # Groups: sex [5]
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <fct> <chr>
#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Darth Va… 202 136 none white yellow 41.9 male mascu…
#> # … with 83 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
group_by(starwars, height_binned = cut(height, 3))
#> # A tibble: 87 × 15
#> # Groups: height_binned [4]
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Darth Va… 202 136 none white yellow 41.9 male mascu…
#> # … with 83 more rows, and 6 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>, height_binned <fct>
This is why you can’t supply a column name to
group_by()
. This amounts to creating a new column
containing the string recycled to the number of rows:
group_by(df, "month")
#> # A tibble: 87 × 4
#> # Groups: "month" [1]
#> name height mass `"month"`
#> <chr> <int> <dbl> <chr>
#> 1 Luke Skywalker 172 77 month
#> 2 C-3PO 167 75 month
#> 3 R2-D2 96 32 month
#> 4 Darth Vader 202 136 month
#> # … with 83 more rows