cat2cat
The introduced cat2cat
algorithm was designed to offer
an easy and clear interface to apply a mapping table (transition table)
which was provided by a data maintainer or built by a researcher. The
objective is to unify an inconsistent coded categorical variable in a
panel dataset, where a transition table is the core element of the
process.
Examples of a dataset with such inconsistent coded categorical variable are ISCO (The International Standard Classification of Occupations) or ICD (International Classification of Diseases) based one. The both classifications are regularly updated to adjust to e.g. new science achievements. More clearly we might image that e.g. new science achievements brings new occupations types on the market or enable recognition of new diseases types.
The categorical variable encoding changes are typically provided by datasets providers in the transition table form, for each time point the changes occurred. A transition table conveys information needed for matching all categories between two periods of time. More precisely it contains two columns where the first column contains old categories and the second column contains the new ones. Sometimes a transition table has to be created manually by a researcher.
The main rule is to replicate the observation if it could be assigned to a few categories. More precisely for each observation we look across a transition table to check how the original category could be mapped to the opposite period one. Then using simple frequencies or statistical methods to approximate weights (probabilities) of being assigned to each of them. For each observation that was replicated, the probabilities have to add up to one. The algorithm distinguishes different mechanics for panel data with and without unique identifiers.
There are 3 important elements:
occup
dataset is an example of unbalance panel dataset.
This is a simulated data although there are applied a real world
characteristics from national statistical office survey. The original
survey is anonymous and take place every two years.
trans
dataset containing transitions between old (2008)
and new (2010) occupational codes. This table could be used to map
encodings in both directions.
library(cat2cat)
library(dplyr)
data(occup)
data(trans)
<- occup[occup$year == 2008, ]
occup_old <- occup[occup$year == 2010, ]
occup_new
<- occup[occup$year == 2006, ]
occup_2006 <- occup[occup$year == 2008, ]
occup_2008 <- occup[occup$year == 2010, ]
occup_2010 <- occup[occup$year == 2012, ] occup_2012
There were prepared two graphs for forward and backward mapping.
These graphs present how the cat2cat::cat2cat
function
works, in this case under a panel dataset without the unique identifiers
and only two periods.
## cat2cat
<- cat2cat(
occup_simple data = list(old = occup_old, new = occup_new, cat_var = "code", time_var = "year"),
mappings = list(trans = trans, direction = "backward")
)
## with informative features it might be usefull to run ml algorithm
## currently only knn, lda or rf (randomForest), a few methods could be specified at once
## where probability will be assessed as fraction of closest points.
<- cat2cat(
occup_2 data = list(old = occup_old, new = occup_new, cat_var = "code", time_var = "year"),
mappings = list(trans = trans, direction = "backward"),
ml = list(
data = occup_new,
cat_var = "code",
method = "knn",
features = c("age", "sex", "edu", "exp", "parttime", "salary"),
args = list(k = 10)
) )
plot_c2c
offers a summary of the replication
process.
# summary_plot
plot_c2c(occup_2$old, type = c("both"))
Example for the 2 period panel dataset.
# mix of methods
<- cat2cat(
occup_2_mix data = list(old = occup_old, new = occup_new, cat_var = "code", time_var = "year"),
mappings = list(trans = trans, direction = "backward"),
ml = list(
data = occup_new,
cat_var = "code",
method = c("knn", "rf", "lda"),
features = c("age", "sex", "edu", "exp", "parttime", "salary"),
args = list(k = 10, ntree = 50)
)
)# cross all methods and subset one highest probability category for each subject
<- occup_2_mix$old %>%
occup_old_mix_highest1 cross_c2c(.) %>%
prune_c2c(., column = "wei_cross_c2c", method = "highest1")
Correlations between different methods of assesing weights are presented.
# correlation between ml models and simple fequencies
$old %>%
occup_2_mixselect(wei_knn_c2c, wei_rf_c2c, wei_lda_c2c, wei_freq_c2c) %>%
cor()
## wei_knn_c2c wei_rf_c2c wei_lda_c2c wei_freq_c2c
## wei_knn_c2c 1.0000000 0.8635586 0.8350984 0.8989887
## wei_rf_c2c 0.8635586 1.0000000 0.8777568 0.8743678
## wei_lda_c2c 0.8350984 0.8777568 1.0000000 0.8807702
## wei_freq_c2c 0.8989887 0.8743678 0.8807702 1.0000000
When we have to map more than 2 time points, then cat2cat has to be
used recursively. However when only three periods have to be mapped, the
middle one might be used as the base one.
If we have to apply many mapping tables across time then pruning methods
might be needed to limit the exponentially growing number of
replications. Such pruning methods are used to remove some of the
replications, for example, leaving only one observation with the highest
probability for each observation replication. Another strategy might be
removing the zero probability replications. As such, pruning methods
could be used before transferring a dataset to the next iteration to
reduce the problem of the exponentially growing number of
observations.
Example with 4 period and only one mapping table:
Unification Process:
# 2010 -> 2008
<- cat2cat(
occup_back_2008_2010 data = list(old = occup_2008, new = occup_2010, cat_var = "code", time_var = "year"),
mappings = list(trans = trans, direction = "backward")
)
# optional, give more control
# the counts could be any of wei_* or their combination
<- occup_back_2008_2010$old[, c("g_new_c2c", "wei_freq_c2c")] %>%
freq_df group_by(g_new_c2c) %>%
summarise(counts = round(sum(wei_freq_c2c)))
# 2008 -> 2006
<- cat2cat(
occup_back_2006_2008 data = list(
old = occup_2006,
new = occup_back_2008_2010$old,
cat_var_new = "g_new_c2c",
cat_var_old = "code",
time_var = "year",
freqs_df = freq_df
),mappings = list(trans = trans, direction = "backward")
)
<- occup_back_2006_2008$old
occup_2006_new <- occup_back_2008_2010$old # or occup_back_2006_2008$new
occup_2008_new <- occup_back_2008_2010$new
occup_2010_new # use ml argument when applied ml models
<- dummy_c2c(occup_2012, "code")
occup_2012_new
<- do.call(rbind, list(occup_2006_new, occup_2008_new, occup_2010_new, occup_2012_new)) final_data_back
Valiation of global counts and per variable level counts:
# We persist the number of observations
<- final_data_back %>%
counts_new cross_c2c() %>%
group_by(year) %>%
summarise(
n = as.integer(round(sum(wei_freq_c2c))),
n2 = as.integer(round(sum(wei_cross_c2c)))
)
<- occup %>%
counts_old group_by(year) %>%
summarise(n = n(), n2 = n(), .groups = "drop")
identical(counts_new, counts_old)
## [1] TRUE
# counts per each level
<- final_data_back %>%
counts_per_level group_by(year, g_new_c2c) %>%
summarise(n = sum(wei_freq_c2c), .groups = "drop") %>%
arrange(g_new_c2c, year)
Unification Process:
A few categories levels are not in the trans table, lacking levels
setdiff(c(occup_2010$code, occup_2012$code), trans$new)
. We
could solve it by adding a “no_cat” level for each of them in the
trans
table.
<- rbind(trans, data.frame(old = "no_cat",
trans2 new = setdiff(c(occup_2010$code, occup_2012$code), trans$new)))
Of course the best solution will be to get these mappings from the data provider
# 2008 -> 2010
<- cat2cat(
occup_for_2008_2010 data = list(old = occup_2008, new = occup_2010, cat_var = "code", time_var = "year"),
mappings = list(trans = trans2, direction = "forward")
)
# optional, give more control
# the counts could be any of wei_* or their combination
<- occup_for_2008_2010$new[, c("g_new_c2c", "wei_freq_c2c")] %>%
freq_df group_by(g_new_c2c) %>%
summarise(counts = round(sum(wei_freq_c2c)))
# 2010 -> 2012
<- cat2cat(
occup_for_2010_2012 data = list(
old = occup_for_2008_2010$new,
new = occup_2012,
cat_var_old = "g_new_c2c",
cat_var_new = "code",
time_var = "year",
freqs_df = freq_df
),mappings = list(trans = trans2, direction = "forward")
)
# use ml argument when applied ml models
<- dummy_c2c(occup_2006, "code")
occup_2006_new <- occup_for_2008_2010$old
occup_2008_new <- occup_for_2008_2010$new # or occup_for_2010_2012$old
occup_2010_new <- occup_for_2010_2012$new
occup_2012_new
<- do.call(rbind, list(occup_2006_new, occup_2008_new, occup_2010_new, occup_2012_new)) final_data_for
Valiation of global counts and per variable level counts.
# We persist the number of observations
<- final_data_for %>%
counts_new cross_c2c() %>%
group_by(year) %>%
summarise(
n = as.integer(round(sum(wei_freq_c2c))),
n2 = as.integer(round(sum(wei_cross_c2c)))
)
<- occup %>%
counts_old group_by(year) %>%
summarise(n = n(), n2 = n(), .groups = "drop")
identical(counts_new, counts_old)
## [1] TRUE
# counts per each level
<- final_data_for %>%
counts_per_level group_by(year, g_new_c2c) %>%
summarise(n = sum(wei_freq_c2c), .groups = "drop") %>%
arrange(g_new_c2c, year)
Unification Process:
# 2010 -> 2008
<- cat2cat(
occup_back_2008_2010 data = list(old = occup_2008, new = occup_2010, cat_var = "code", time_var = "year"),
mappings = list(trans = trans, direction = "backward"),
ml = list(
data = dplyr::bind_rows(occup_2010, occup_2012),
cat_var = "code",
method = c("knn"),
features = c("age", "sex", "edu", "exp", "parttime", "salary"),
args = list(k = 10)
)
)
# 2008 -> 2006
<- cat2cat(
occup_back_2006_2008 data = list(
old = occup_2006,
new = occup_back_2008_2010$old,
cat_var_new = "g_new_c2c",
cat_var_old = "code",
time_var = "year"
),mappings = list(trans = trans, direction = "backward"),
ml = list(
data = dplyr::bind_rows(occup_2010, occup_2012),
cat_var = "code",
method = c("knn"),
features = c("age", "sex", "edu", "exp", "parttime", "salary"),
args = list(k = 10)
)
)
<- occup_back_2006_2008$old
occup_2006_new <- occup_back_2008_2010$old # or occup_back_2006_2008$new
occup_2008_new <- occup_back_2008_2010$new
occup_2010_new <- dummy_c2c(occup_2012, cat_var = "code", ml = c("knn"))
occup_2012_new
<- do.call(rbind, list(occup_2006_new, occup_2008_new, occup_2010_new, occup_2012_new)) final_data_back_ml
Valiation of global counts and per variable level counts.
<- final_data_back_ml %>%
counts_new cross_c2c() %>%
group_by(year) %>%
summarise(
n = as.integer(round(sum(wei_freq_c2c))),
n2 = as.integer(round(sum(wei_cross_c2c))),
.groups = "drop"
)
<- occup %>%
counts_old group_by(year) %>%
summarise(n = n(), n2 = n(), .groups = "drop")
identical(counts_new, counts_old)
## [1] TRUE
# counts per each level
<- final_data_back_ml %>%
counts_per_level group_by(year, g_new_c2c) %>%
summarise(n = sum(wei_freq_c2c), .groups = "drop") %>%
arrange(g_new_c2c, year)
Possible processing:
<- final_data_back_ml %>%
ff split(.$year) %>%
lapply(function(x) {
%>%
x cross_c2c() %>%
prune_c2c(column = "wei_cross_c2c", method = "highest1")
%>%
}) bind_rows()
all.equal(nrow(ff), sum(final_data_back_ml$wei_freq_c2c))
## [1] TRUE
The replication process is neutral for calculating at least the first 2 central moments for all variables. This is because for each observation which was replicated, probabilities sum to one. If we are removing non-zero probability observations then replication probabilities have to be reweighed to still sum to one. Important note is that removing non zero probability observations should be done only if needed, as it impact the counts of categorical variable levels. More preciously removing non-zero weights will influence the regression model if we will use the unified categorical variable.
The next 3 regressions have the same results.
## orginal dataset
<- lm(I(log(salary)) ~ age + sex + factor(edu) + parttime + exp, occup_old, weights = multiplier)
lms2 summary(lms2)
##
## Call:
## lm(formula = I(log(salary)) ~ age + sex + factor(edu) + parttime +
## exp, data = occup_old, weights = multiplier)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -70.064 -5.773 -0.387 5.378 75.990
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.5999047 0.0242898 354.055 < 2e-16 ***
## age -0.0034642 0.0006339 -5.465 4.71e-08 ***
## sexTRUE 0.2705985 0.0069407 38.987 < 2e-16 ***
## factor(edu)2 -0.0829940 0.0132021 -6.286 3.33e-10 ***
## factor(edu)3 -0.3555287 0.0172194 -20.647 < 2e-16 ***
## factor(edu)4 -0.4162423 0.0098900 -42.087 < 2e-16 ***
## factor(edu)5 -0.4045499 0.0139431 -29.014 < 2e-16 ***
## factor(edu)6 -0.6272203 0.0098347 -63.777 < 2e-16 ***
## factor(edu)7 -0.6108803 0.0993123 -6.151 7.86e-10 ***
## factor(edu)8 -0.6734363 0.0155248 -43.378 < 2e-16 ***
## parttime 1.9666250 0.0158731 123.897 < 2e-16 ***
## exp 0.0129456 0.0006092 21.251 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.976 on 17211 degrees of freedom
## Multiple R-squared: 0.5886, Adjusted R-squared: 0.5883
## F-statistic: 2239 on 11 and 17211 DF, p-value: < 2.2e-16
## using one highest cross weights
## cross_c2c to cross differen methods weights
## prune_c2c - highest1 leave only one the highest probability obs for each subject
<- occup_2$old %>%
occup_old_2 cross_c2c(., c("wei_freq_c2c", "wei_knn_c2c"), c(1 / 2, 1 / 2)) %>%
prune_c2c(., column = "wei_cross_c2c", method = "highest1")
<- lm(I(log(salary)) ~ age + sex + factor(edu) + parttime + exp, occup_old_2, weights = multiplier)
lms summary(lms)
##
## Call:
## lm(formula = I(log(salary)) ~ age + sex + factor(edu) + parttime +
## exp, data = occup_old_2, weights = multiplier)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -70.064 -5.773 -0.387 5.378 75.990
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.5999047 0.0242898 354.055 < 2e-16 ***
## age -0.0034642 0.0006339 -5.465 4.71e-08 ***
## sexTRUE 0.2705985 0.0069407 38.987 < 2e-16 ***
## factor(edu)2 -0.0829940 0.0132021 -6.286 3.33e-10 ***
## factor(edu)3 -0.3555287 0.0172194 -20.647 < 2e-16 ***
## factor(edu)4 -0.4162423 0.0098900 -42.087 < 2e-16 ***
## factor(edu)5 -0.4045499 0.0139431 -29.014 < 2e-16 ***
## factor(edu)6 -0.6272203 0.0098347 -63.777 < 2e-16 ***
## factor(edu)7 -0.6108803 0.0993123 -6.151 7.86e-10 ***
## factor(edu)8 -0.6734363 0.0155248 -43.378 < 2e-16 ***
## parttime 1.9666250 0.0158731 123.897 < 2e-16 ***
## exp 0.0129456 0.0006092 21.251 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.976 on 17211 degrees of freedom
## Multiple R-squared: 0.5886, Adjusted R-squared: 0.5883
## F-statistic: 2239 on 11 and 17211 DF, p-value: < 2.2e-16
## we have to adjust size of stds as we artificialy enlarge degrees of freedom
<- occup_2$old %>%
occup_old_3 prune_c2c(method = "nonzero") # many prune methods like highest
<- lm(I(log(salary)) ~ age + sex + factor(edu) + parttime + exp, occup_old_3, weights = multiplier * wei_freq_c2c)
lms_replicated # Adjusted R2 is meaningless here
$df.residual <- nrow(occup_old) - length(lms_replicated$assign)
lms_replicatedsuppressWarnings(summary(lms_replicated))
##
## Call:
## lm(formula = I(log(salary)) ~ age + sex + factor(edu) + parttime +
## exp, data = occup_old_3, weights = multiplier * wei_freq_c2c)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -53.217 -1.067 -0.142 0.786 55.322
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.5999047 0.0242898 354.055 < 2e-16 ***
## age -0.0034642 0.0006339 -5.465 4.71e-08 ***
## sexTRUE 0.2705985 0.0069407 38.987 < 2e-16 ***
## factor(edu)2 -0.0829940 0.0132021 -6.286 3.33e-10 ***
## factor(edu)3 -0.3555287 0.0172194 -20.647 < 2e-16 ***
## factor(edu)4 -0.4162423 0.0098900 -42.087 < 2e-16 ***
## factor(edu)5 -0.4045499 0.0139431 -29.014 < 2e-16 ***
## factor(edu)6 -0.6272203 0.0098347 -63.777 < 2e-16 ***
## factor(edu)7 -0.6108803 0.0993123 -6.151 7.86e-10 ***
## factor(edu)8 -0.6734363 0.0155248 -43.378 < 2e-16 ***
## parttime 1.9666250 0.0158731 123.897 < 2e-16 ***
## exp 0.0129456 0.0006092 21.251 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.976 on 17211 degrees of freedom
## Multiple R-squared: 0.5886, Adjusted R-squared: -2.902
## F-statistic: 2239 on 11 and 17211 DF, p-value: < 2.2e-16
Example regression model with usage of the unified variable
(g_new_c2c
). A separate model for each occupational
group.
<- formula(I(log(salary)) ~ age + sex + factor(edu) + parttime + exp + factor(year))
formula_oo <- final_data_back %>%
oo prune_c2c(method = "nonzero") %>% # many prune methods like highest
group_by(g_new_c2c) %>%
do(
lm = tryCatch(
summary(lm(formula_oo, ., weights = multiplier * wei_freq_c2c)),
error = function(e) NULL
)%>%
) filter(!is.null(lm))
head(oo)
## # A tibble: 6 × 2
## # Rowwise:
## g_new_c2c lm
## <chr> <list>
## 1 111103 <smmry.lm>
## 2 111201 <smmry.lm>
## 3 111301 <smmry.lm>
## 4 111405 <smmry.lm>
## 5 112001 <smmry.lm>
## 6 112002 <smmry.lm>
$lm[[2]] oo
##
## Call:
## lm(formula = formula_oo, data = ., weights = multiplier * wei_freq_c2c)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -2.0290 -0.8631 -0.0695 0.6641 3.9475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.1942575 0.4121874 22.306 < 2e-16 ***
## age 0.0155345 0.0078979 1.967 0.054247 .
## sexTRUE 0.4848524 0.0804272 6.028 1.45e-07 ***
## factor(edu)2 -0.1058422 0.1638513 -0.646 0.520988
## factor(edu)3 -0.7160357 0.3174691 -2.255 0.028104 *
## factor(edu)4 -0.1607970 0.1966340 -0.818 0.417030
## parttime 1.0150593 0.4116902 2.466 0.016827 *
## exp -0.0007341 0.0068603 -0.107 0.915170
## factor(year)2008 -0.0948504 0.1363589 -0.696 0.489612
## factor(year)2010 0.0341944 0.1366244 0.250 0.803303
## factor(year)2012 0.5073877 0.1209887 4.194 0.000101 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.309 on 55 degrees of freedom
## Multiple R-squared: 0.7876, Adjusted R-squared: 0.749
## F-statistic: 20.4 on 10 and 55 DF, p-value: 4.211e-15
cat2cat_agg
is mainly useful for aggregate datasets.
library(cat2cat)
data(verticals)
<- verticals[verticals$v_date == "2020-04-01", ]
agg_old <- verticals[verticals$v_date == "2020-05-01", ]
agg_new
## cat2cat_agg - could map in both directions at once although
## usually we want to have old or new representation
<- cat2cat_agg(
agg data = list(
old = agg_old,
new = agg_new,
cat_var = "vertical",
time_var = "v_date",
freq_var = "counts"
),%<% c(Automotive1, Automotive2),
Automotive c(Kids1, Kids2) %>% c(Kids),
%>% c(Home, Supermarket)
Home
)
## possible processing
$old %>%
agggroup_by(vertical) %>%
summarise(sales = sum(sales * prop_c2c), counts = sum(counts * prop_c2c), v_date = first(v_date))
## # A tibble: 11 × 4
## vertical sales counts v_date
## <chr> <dbl> <dbl> <chr>
## 1 Automotive1 49.4 87.1 2020-04-01
## 2 Automotive2 27.2 47.9 2020-04-01
## 3 Books 104. 7489 2020-04-01
## 4 Clothes 105. 1078 2020-04-01
## 5 Electronics 87.9 9544 2020-04-01
## 6 Fashion 94.5 7399 2020-04-01
## 7 Health 94.4 16102 2020-04-01
## 8 Home 94.3 2414 2020-04-01
## 9 Kids1 103. 17686 2020-04-01
## 10 Kids2 111. 32349 2020-04-01
## 11 Sport 91.1 4957 2020-04-01
$new %>%
agggroup_by(vertical) %>%
summarise(sales = sum(sales * prop_c2c), counts = sum(counts * prop_c2c), v_date = first(v_date))
## # A tibble: 11 × 4
## vertical sales counts v_date
## <chr> <dbl> <dbl> <chr>
## 1 Automotive1 100. 36453 2020-05-01
## 2 Automotive2 102. 20039 2020-05-01
## 3 Books 112. 14239 2020-05-01
## 4 Clothes 108. 27185 2020-05-01
## 5 Electronics 82.7 859 2020-05-01
## 6 Fashion 85.2 4981 2020-05-01
## 7 Health 104. 1934 2020-05-01
## 8 Home 178. 29375 2020-05-01
## 9 Kids1 37.3 309. 2020-05-01
## 10 Kids2 68.2 565. 2020-05-01
## 11 Sport 99.3 9843 2020-05-01
If the panel datset is balanced so contains subjects id’s then we could match some of the categories directly. Unfortunately we have to assume that a subject could not change the category level over time.
library(cat2cat)
## the ean variable is a unique identifier
data(verticals2)
<- verticals2[verticals2$v_date == "2020-04-01", ]
vert_old <- verticals2[verticals2$v_date == "2020-05-01", ]
vert_new
## get transitions table
<- vert_old %>%
trans_v inner_join(vert_new, by = "ean") %>%
select(vertical.x, vertical.y) %>%
distinct()
#
## cat2cat
## it is important to set id_var as then we merging categories 1 to 1
## for this identifier which exists in both periods.
<- cat2cat(
verts data = list(old = vert_old, new = vert_new, id_var = "ean", cat_var = "vertical", time_var = "v_date"),
mappings = list(trans = trans_v, direction = "backward")
)