library(calculus)
Hermite polynomials are obtained by differentiation of the Gaussian kernel:
Hν(x,Σ)=exp(12xiΣijxj)(−∂x)νexp(−12xiΣijxj)
where Σ is a d-dimensional square matrix and ν=(ν1…νd) is the vector representing the order of differentiation for each variable x=(x1…xd). In the case where Σ=1 and x=x1 the formula reduces to the standard univariate Hermite polynomials:
Hν(x)=ex22(−1)νdνdxνe−x22
The function hermite
generates recursively all the Hermite polynomials of degree ν′ where |ν′|≤|ν|. The output is a list
of Hermite polynomials of degree ν′, where each polynomial is described as a list
containing the character
representing the polynomial, the order of the polynomial, and a data.frame
containing the variables, coefficients and degrees of each term in the polynomial.
In the univariate case, for ν=2:
hermite(order = 2)
#> $`0`
#> $`0`$f
#> [1] "(1) * 1"
#>
#> $`0`$order
#> [1] 0
#>
#> $`0`$terms
#> var coef degree
#> 0 1 1 0
#>
#>
#> $`1`
#> $`1`$f
#> [1] "(1) * x^1"
#>
#> $`1`$order
#> [1] 1
#>
#> $`1`$terms
#> var coef degree
#> 0 1 0 0
#> 1 x^1 1 1
#>
#>
#> $`2`
#> $`2`$f
#> [1] "(-1) * 1 + (1) * x^2"
#>
#> $`2`$order
#> [1] 2
#>
#> $`2`$terms
#> var coef degree
#> 0 1 -1 0
#> 1 x^1 0 1
#> 2 x^2 1 2
In the multivariate case, where for simplicity Σij=δij, x=(x1,x2), and |ν|=2:
hermite(order = 2, sigma = diag(2), var = c("x1", "x2"))
#> $`0,0`
#> $`0,0`$f
#> [1] "(1) * 1"
#>
#> $`0,0`$order
#> [1] 0
#>
#> $`0,0`$terms
#> var coef degree
#> 0,0 1 1 0
#>
#>
#> $`0,1`
#> $`0,1`$f
#> [1] "(1) * x2^1"
#>
#> $`0,1`$order
#> [1] 1
#>
#> $`0,1`$terms
#> var coef degree
#> 0,0 1 0 0
#> 0,1 x2^1 1 1
#> 1,0 x1^1 0 1
#>
#>
#> $`1,0`
#> $`1,0`$f
#> [1] "(1) * x1^1"
#>
#> $`1,0`$order
#> [1] 1
#>
#> $`1,0`$terms
#> var coef degree
#> 0,0 1 0 0
#> 0,1 x2^1 0 1
#> 1,0 x1^1 1 1
#>
#>
#> $`0,2`
#> $`0,2`$f
#> [1] "(-1) * 1 + (1) * x2^2"
#>
#> $`0,2`$order
#> [1] 2
#>
#> $`0,2`$terms
#> var coef degree
#> 0,0 1 -1 0
#> 0,1 x2^1 0 1
#> 1,0 x1^1 0 1
#> 0,2 x2^2 1 2
#> 2,0 x1^2 0 2
#> 1,1 x1^1*x2^1 0 2
#>
#>
#> $`2,0`
#> $`2,0`$f
#> [1] "(-1) * 1 + (1) * x1^2"
#>
#> $`2,0`$order
#> [1] 2
#>
#> $`2,0`$terms
#> var coef degree
#> 0,0 1 -1 0
#> 0,1 x2^1 0 1
#> 1,0 x1^1 0 1
#> 0,2 x2^2 0 2
#> 2,0 x1^2 1 2
#> 1,1 x1^1*x2^1 0 2
#>
#>
#> $`1,1`
#> $`1,1`$f
#> [1] "(1) * x1^1*x2^1"
#>
#> $`1,1`$order
#> [1] 2
#>
#> $`1,1`$terms
#> var coef degree
#> 0,0 1 0 0
#> 0,1 x2^1 0 1
#> 1,0 x1^1 0 1
#> 0,2 x2^2 0 2
#> 2,0 x1^2 0 2
#> 1,1 x1^1*x2^1 1 2
If transform
is not NULL
, the variables var
x are replaced with transform
f(x) to compute the polynomials H_{ν}(f(x),\Sigma). For example:
f(x_1,x_2)= \begin{bmatrix} x_1+x_2,x_1-x_2 \end{bmatrix}
hermite(order = 2, sigma = diag(2), var = c("x1", "x2"), transform = c('x1+x2','x1-x2'))
#> $`0,0`
#> $`0,0`$f
#> [1] "(1) * 1"
#>
#> $`0,0`$order
#> [1] 0
#>
#> $`0,0`$terms
#> var coef degree
#> 0,0 1 1 0
#>
#>
#> $`0,1`
#> $`0,1`$f
#> [1] "(-1) * x2^1 + (1) * x1^1"
#>
#> $`0,1`$order
#> [1] 1
#>
#> $`0,1`$terms
#> var coef degree
#> 0,0 1 0 0
#> 0,1 x2^1 -1 1
#> 1,0 x1^1 1 1
#>
#>
#> $`1,0`
#> $`1,0`$f
#> [1] "(1) * x2^1 + (1) * x1^1"
#>
#> $`1,0`$order
#> [1] 1
#>
#> $`1,0`$terms
#> var coef degree
#> 0,0 1 0 0
#> 0,1 x2^1 1 1
#> 1,0 x1^1 1 1
#>
#>
#> $`0,2`
#> $`0,2`$f
#> [1] "(-1) * 1 + (1) * x2^2 + (1) * x1^2 + (-2) * x1^1*x2^1"
#>
#> $`0,2`$order
#> [1] 2
#>
#> $`0,2`$terms
#> var coef degree
#> 0,0 1 -1 0
#> 0,1 x2^1 0 1
#> 1,0 x1^1 0 1
#> 0,2 x2^2 1 2
#> 2,0 x1^2 1 2
#> 1,1 x1^1*x2^1 -2 2
#>
#>
#> $`2,0`
#> $`2,0`$f
#> [1] "(-1) * 1 + (1) * x2^2 + (1) * x1^2 + (2) * x1^1*x2^1"
#>
#> $`2,0`$order
#> [1] 2
#>
#> $`2,0`$terms
#> var coef degree
#> 0,0 1 -1 0
#> 0,1 x2^1 0 1
#> 1,0 x1^1 0 1
#> 0,2 x2^2 1 2
#> 2,0 x1^2 1 2
#> 1,1 x1^1*x2^1 2 2
#>
#>
#> $`1,1`
#> $`1,1`$f
#> [1] "(-1) * x2^2 + (1) * x1^2"
#>
#> $`1,1`$order
#> [1] 2
#>
#> $`1,1`$terms
#> var coef degree
#> 0,0 1 0 0
#> 0,1 x2^1 0 1
#> 1,0 x1^1 0 1
#> 0,2 x2^2 -1 2
#> 2,0 x1^2 1 2
#> 1,1 x1^1*x2^1 0 2
Guidotti, E. (2020). “calculus: High dimensional numerical and symbolic calculus in R”. https://arxiv.org/abs/2101.00086
A BibTeX entry for LaTeX users is
@Misc{,
title = {calculus: High Dimensional Numerical and Symbolic Calculus in R},
author = {Emanuele Guidotti},
year = {2020},
eprint = {2101.00086},
archiveprefix = {arXiv},
primaryclass = {cs.MS},
url = {https://arxiv.org/abs/2101.00086} }