Customization within bestNormalize

Ryan A Peterson

2022-06-13

Custom functions with bestNormalize

This vignette will go over the steps required to implement a custom user-defined function within the bestNormalize framework.

There are 3 steps.

  1. Create transformation function

  2. Create predict method for transformation function (that can be applied to new data)

  3. Pass through new function and predict method to bestNormalize

Example: cube-root

S3 methods

Here, we start by defining a new function that we’ll call cuberoot_x, which will take an argument a (as does the sqrt_x function) which will try to add a constant if it sees any negative numbers in x. It will also take the argument standardize which will center and scale the transformed data so that it’s centered at 0 with SD = 1.

## Define user-function
cuberoot_x <- function(x, a = NULL, standardize = TRUE, ...) {
  stopifnot(is.numeric(x))
  
  min_a <- max(0, -(min(x, na.rm = TRUE)))
  if(!length(a)) 
    a <- min_a
  if(a < min_a) {
    warning("Setting a <  max(0, -(min(x))) can lead to transformation issues",
            "Standardize set to FALSE")
    standardize <- FALSE
  }
  
  
  x.t <- (x + a)^(1/3)
  mu <- mean(x.t, na.rm = TRUE)
  sigma <- sd(x.t, na.rm = TRUE)
  if (standardize) x.t <- (x.t - mu) / sigma
  
  # Get in-sample normality statistic results
  ptest <- nortest::pearson.test(x.t)
  
  val <- list(
    x.t = x.t,
    x = x,
    mean = mu,
    sd = sigma,
    a = a,
    n = length(x.t) - sum(is.na(x)),
    norm_stat = unname(ptest$statistic / ptest$df),
    standardize = standardize
  )
  
  # Assign class
  class(val) <- c('cuberoot_x', class(val))
  val
}

Note that we assigned a class to the object this returns of the same name; this is necessary for successful implementation within bestNormalize. We’ll also need an associated predict method that is used to apply the transformation to newly observed data. `

predict.cuberoot_x <- function(object, newdata = NULL, inverse = FALSE, ...) {
  
  # If no data supplied and not inverse
  if (is.null(newdata) & !inverse)
    newdata <- object$x
  
  # If no data supplied and inverse
  if (is.null(newdata) & inverse)
    newdata <- object$x.t
  
  # Actually performing transformations
  
  # Perform inverse transformation as estimated
  if (inverse) {
    
    # Reverse-standardize
    if (object$standardize) 
      newdata <- newdata * object$sd + object$mean
    
    # Reverse-cube-root (cube)
    newdata <-  newdata^3 - object$a
    
    
    # Otherwise, perform transformation as estimated
  } else if (!inverse) {
    # Take cube root
    newdata <- (newdata + object$a)^(1/3)
    
    # Standardize to mean 0, sd 1
    if (object$standardize) 
      newdata <- (newdata - object$mean) / object$sd
  }
  
  # Return transformed data
  unname(newdata)
}

Optional: print method

This will be printed when bestNormalize selects your custom method or when you print an object returned by your new custom function.

print.cuberoot_x <- function(x, ...) {
  cat(ifelse(x$standardize, "Standardized", "Non-Standardized"),
      'cuberoot(x + a) Transformation with', x$n, 'nonmissing obs.:\n', 
      'Relevant statistics:\n',
      '- a =', x$a, '\n',
      '- mean (before standardization) =', x$mean, '\n',
      '- sd (before standardization) =', x$sd, '\n')
}

Note: if you can find a similar transformation in the source code, it’s easy to model your code after it. For instance, for cuberoot_x and predict.cuberoot_x, I used sqrt_x.R as a template file.

Implementing with bestNormalize

# Store custom functions into list
custom_transform <- list(
  cuberoot_x = cuberoot_x,
  predict.cuberoot_x = predict.cuberoot_x,
  print.cuberoot_x = print.cuberoot_x
)

set.seed(123129)
x <- rgamma(100, 1, 1)
(b <- bestNormalize(x = x, new_transforms = custom_transform, standardize = FALSE))
## Best Normalizing transformation with 100 Observations
##  Estimated Normality Statistics (Pearson P / df, lower => more normal):
##  - arcsinh(x): 1.2347
##  - Box-Cox: 1.0267
##  - cuberoot_x: 0.9787
##  - Exp(x): 4.7947
##  - Log_b(x+a): 1.3547
##  - No transform: 2.0027
##  - orderNorm (ORQ): 1.1627
##  - sqrt(x + a): 1.0907
##  - Yeo-Johnson: 1.0987
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##  
## Based off these, bestNormalize chose:
## Non-Standardized cuberoot(x + a) Transformation with 100 nonmissing obs.:
##  Relevant statistics:
##  - a = 0 
##  - mean (before standardization) = 0.9588261 
##  - sd (before standardization) = 0.3298665

Evidently, the cube-rooting was the best normalizing transformation!

Sanity check

Is this code actually performing the cube-rooting?

all.equal(x^(1/3), b$chosen_transform$x.t)
## [1] TRUE
all.equal(x^(1/3), predict(b))
## [1] TRUE

It does indeed.

Using custom normalization statistics

The bestNormalize package can estimate any univariate statistic using its CV framework. A user-defined function can be passed in through the norm_stat_fn argument, and this function will then be applied in lieu of the Pearson test statistic divided by its degree of freedom.

The user-defined function must take an argument x, which indicates the data on which a user wants to evaluate the statistic.

Here is an example using Lilliefors (Kolmogorov-Smirnov) normality test statistic:

bestNormalize(x, norm_stat_fn = function(x) nortest::lillie.test(x)$stat)
## Best Normalizing transformation with 100 Observations
##  Estimated Normality Statistics (using custom normalization statistic)
##  - arcsinh(x): 0.1958
##  - Box-Cox: 0.1785
##  - Center+scale: 0.2219
##  - Exp(x): 0.3299
##  - Log_b(x+a): 0.1959
##  - orderNorm (ORQ): 0.186
##  - sqrt(x + a): 0.1829
##  - Yeo-Johnson: 0.1872
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##  
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 100 nonmissing obs.:
##  Estimated statistics:
##  - lambda = 0.3281193 
##  - mean (before standardization) = -0.1263882 
##  - sd (before standardization) = 0.9913552

Here is an example using Lilliefors (Kolmogorov-Smirnov) normality test’s p-value:

(dont_do_this <- bestNormalize(x, norm_stat_fn = function(x) nortest::lillie.test(x)$p))
## Best Normalizing transformation with 100 Observations
##  Estimated Normality Statistics (using custom normalization statistic)
##  - arcsinh(x): 0.4327
##  - Box-Cox: 0.4831
##  - Center+scale: 0.2958
##  - Exp(x): 0.0675
##  - Log_b(x+a): 0.3589
##  - orderNorm (ORQ): 0.4492
##  - sqrt(x + a): 0.4899
##  - Yeo-Johnson: 0.4531
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##  
## Based off these, bestNormalize chose:
## Standardized exp(x) Transformation with 100 nonmissing obs.:
##  Relevant statistics:
##  - mean (before standardization) = 6.885396 
##  - sd (before standardization) = 13.66084

Note: bestNormalize will attempt to minimize this statistic by default, which is definitely not what you want to do when calculating the p-value. This is seen in the example above, as the WORST normalization transformation is chosen.

In this case, a user is advised to either manually select the best one:

best_transform <- names(which.max(dont_do_this$norm_stats))
(do_this <- dont_do_this$other_transforms[[best_transform]])
## Standardized sqrt(x + a) Transformation with 100 nonmissing obs.:
##  Relevant statistics:
##  - a = 0 
##  - mean (before standardization) = 0.9811849 
##  - sd (before standardization) = 0.4779252

Or, the user can reverse their defined statistic (in this case by subtracting it from 1):

(do_this <- bestNormalize(x, norm_stat_fn = function(x) 1-nortest::lillie.test(x)$p))
## Best Normalizing transformation with 100 Observations
##  Estimated Normality Statistics (using custom normalization statistic)
##  - arcsinh(x): 0.5166
##  - Box-Cox: 0.4191
##  - Center+scale: 0.6521
##  - Exp(x): 0.9601
##  - Log_b(x+a): 0.5338
##  - orderNorm (ORQ): 0.4646
##  - sqrt(x + a): 0.4475
##  - Yeo-Johnson: 0.4773
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##  
## Based off these, bestNormalize chose:
## Standardized Box Cox Transformation with 100 nonmissing obs.:
##  Estimated statistics:
##  - lambda = 0.3281193 
##  - mean (before standardization) = -0.1263882 
##  - sd (before standardization) = 0.9913552