Increasing data sizes create challenges for the fundamental tasks of publishing, distributing, and preserving data. Despite (or perhaps because of) the diverse and ever-expanding number of database and file formats, the humble plain text file such as comma or tab-separated-values (e.g. .csv
or .tsv
files) remains the gold standard for data archiving and distribution. These files can read on almost any platform or tool and can be efficiently compressed using long-standing and widely available standard open source libraries like gzip
or bzip2
. In contrast, database storage formats and dumps are usually particular to the database platform used to generate them, and will likely not be compatible between different database engines (e.g. PostgreSQL -> SQLite) or even between different versions of the same engine. Researchers unfamiliar with these databases will have difficulty accessing such data, and these dumps may also be in formats that are less efficient to compress.
Working with tables that are too large for working memory on most machines by using external relational database stores is now a common R practice, thanks to ever-rising availability of data and increasing support and popularity of packages such as DBI
, dplyr
, and dbplyr
. Working with plain text files becomes increasingly difficult in this context. Many R users will not have sufficient RAM to simply read in a 10 GB .tsv
file into R. Similarly, moving a 10 GB database out of a relational data file and into a plain text file for archiving and distribution is similarly challenging from R. While most relational database back-ends implement some form of COPY
or IMPORT
that allows them to read in and export out plain text files directly, these methods are not consistent across database types and not part of the standard SQL interface. Most importantly for our case, they also cannot be called directly from R, but require a separate stand-alone installation of the database client. arkdb
provides a simple solution to these two tasks.
The goal of arkdb
is to provide a convenient way to move data from large compressed text files (e.g. *.tsv.bz2
) into any DBI-compliant database connection (see DBI), and move tables out of such databases into text files. The key feature of arkdb
is that files are moved between databases and text files in chunks of a fixed size, allowing the package functions to work with tables that would be much to large to read into memory all at once. This will be slower than reading the file into memory at one go, but can be scaled to larger data and larger data with no additional memory requirement.
You can install arkdb
from GitHub with:
# install.packages("devtools")
::install_github("cboettig/arkdb") devtools
library(arkdb)
# additional libraries just for this demo
library(dbplyr)
library(dplyr)
library(nycflights13)
library(fs)
First, we’ll need an example database to work with. Conveniently, there is a nice example using the NYC flights data built into the dbplyr
package.
<- tempdir() # Or can be your working directory, "."
tmp <- dbplyr::nycflights13_sqlite(tmp)
db #> Caching nycflights db at /tmp/RtmpH1NR3d/nycflights13.sqlite
#> Creating table: airlines
#> Creating table: airports
#> Creating table: flights
#> Creating table: planes
#> Creating table: weather
To create an archive, we just give ark
the connection to the database and tell it where we want the *.tsv.bz2
files to be archived. We can also set the chunk size as the number of lines
read in a single chunk. More lines per chunk usually means faster run time at the cost of higher memory requirements.
<- fs::dir_create(fs::path(tmp, "nycflights"))
dir ark(db, dir, lines = 50000)
#> Exporting airlines in 50000 line chunks:
#> ...Done! (in 0.004504681 secs)
#> Exporting airports in 50000 line chunks:
#> ...Done! (in 0.01823521 secs)
#> Exporting flights in 50000 line chunks:
#> ...Done! (in 10.57685 secs)
#> Exporting planes in 50000 line chunks:
#> ...Done! (in 0.03616881 secs)
#> Exporting weather in 50000 line chunks:
#> ...Done! (in 0.8809209 secs)
We can take a look and confirm the files have been written. Note that we can use fs::dir_info
to get a nice snapshot of the file sizes. Compare the compressed sizes to the original database:
::dir_info(dir) %>%
fsselect(path, size) %>%
mutate(path = fs::path_file(path))
#> # A tibble: 5 × 2
#> path size
#> <chr> <fs::bytes>
#> 1 airlines.tsv.bz2 260
#> 2 airports.tsv.bz2 28.13K
#> 3 flights.tsv.bz2 4.85M
#> 4 planes.tsv.bz2 11.96K
#> 5 weather.tsv.bz2 278.84K
::file_info(fs::path(tmp,"nycflights13.sqlite")) %>%
fspull(size)
#> 44.9M
Now that we’ve gotten all the database into (compressed) plain text files, let’s get them back out. We simply need to pass unark
a list of these compressed files and a connection to the database. Here we create a new local SQLite database. Note that this design means that it is also easy to use arkdb
to move data between databases.
<- fs::dir_ls(dir, glob = "*.tsv.bz2")
files <- DBI::dbConnect(RSQLite::SQLite(), fs::path(tmp, "local.sqlite")) new_db
As with ark
, we can set the chunk size to control the memory footprint required:
unark(files, new_db, lines = 50000)
#> Importing /tmp/RtmpH1NR3d/nycflights/airlines.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 0.01277733 secs)
#> Importing /tmp/RtmpH1NR3d/nycflights/airports.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 0.02310681 secs)
#> Importing /tmp/RtmpH1NR3d/nycflights/flights.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 7.23968 secs)
#> Importing /tmp/RtmpH1NR3d/nycflights/planes.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 0.03487492 secs)
#> Importing /tmp/RtmpH1NR3d/nycflights/weather.tsv.bz2 in 50000 line chunks:
#> ...Done! (in 0.2881908 secs)
unark
returns a dplyr
database connection that we can use in the usual way:
tbl(new_db, "flights")
#> # Source: table<flights> [?? x 19]
#> # Database: sqlite 3.37.0 [/tmp/RtmpH1NR3d/local.sqlite]
#> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#> <int> <int> <int> <int> <int> <int> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> 7 2013 1 1 555 600 -5 913 854
#> 8 2013 1 1 557 600 -3 709 723
#> 9 2013 1 1 557 600 -3 838 846
#> 10 2013 1 1 558 600 -2 753 745
#> # … with more rows, and 11 more variables: arr_delay <int>, carrier <chr>,
#> # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <int>,
#> # distance <int>, hour <int>, minute <int>, time_hour <dbl>
# Remove example files we created.
::dbDisconnect(new_db)
DBIunlink(dir, TRUE)
unlink(fs::path(tmp, "local.sqlite"))
By default, arkdb
uses tsv
format, implemented in base tools, as the text-based serialization. The tsv
standard is particularly attractive because it side-steps some of the ambiguities present in the CSV format due to string quoting. The IANA Standard for TSV neatly avoids this for tab-separated values by insisting that a tab can only ever be a separator.
arkdb
provides a pluggable mechanism for changing the back end utility used to write text files. For instance, if we need to read in or export in .csv
format, we can simply swap in a csv
based reader in both ark()
and unark()
methods, as illustrated here:
<- fs::dir_create(fs::path(tmp, "nycflights"))
dir
ark(db, dir,
streamable_table = streamable_base_csv())
#> Exporting airlines in 50000 line chunks:
#> ...Done! (in 0.002615929 secs)
#> Exporting airports in 50000 line chunks:
#> ...Done! (in 0.02297091 secs)
#> Exporting flights in 50000 line chunks:
#> ...Done! (in 13.05323 secs)
#> Exporting planes in 50000 line chunks:
#> ...Done! (in 0.03677654 secs)
#> Exporting weather in 50000 line chunks:
#> ...Done! (in 0.8859999 secs)
<- fs::dir_ls(dir, glob = "*.csv.bz2")
files <- DBI::dbConnect(RSQLite::SQLite(), fs::path(tmp, "local.sqlite"))
new_db
unark(files, new_db,
streamable_table = streamable_base_csv())
#> Importing /tmp/RtmpH1NR3d/nycflights/airlines.csv.bz2 in 50000 line chunks:
#> ...Done! (in 0.01166582 secs)
#> Importing /tmp/RtmpH1NR3d/nycflights/airports.csv.bz2 in 50000 line chunks:
#> ...Done! (in 0.02440929 secs)
#> Importing /tmp/RtmpH1NR3d/nycflights/flights.csv.bz2 in 50000 line chunks:
#> ...Done! (in 7.511088 secs)
#> Importing /tmp/RtmpH1NR3d/nycflights/planes.csv.bz2 in 50000 line chunks:
#> ...Done! (in 0.04013038 secs)
#> Importing /tmp/RtmpH1NR3d/nycflights/weather.csv.bz2 in 50000 line chunks:
#> ...Done! (in 0.3298368 secs)
arkdb
also provides the function streamable_table()
to facilitate users creating their own streaming table interfaces. For instance, if you would prefer to use readr
methods to read and write tsv
files, we could construct the table as follows (streamable_readr_tsv()
and streamable_readr_csv()
are also shipped inside arkdb
for convenience):
<-
stream streamable_table(
function(file, ...) readr::read_tsv(file, ...),
function(x, path, omit_header)
::write_tsv(x = x, path = path, append = omit_header),
readr"tsv")
and we can then pass such a streamable table directly to ark()
and unark()
, like so:
ark(db, dir,
streamable_table = stream)
#> Exporting airlines in 50000 line chunks:
#> Warning: The `path` argument of `write_tsv()` is deprecated as of readr 1.4.0.
#> Please use the `file` argument instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
#> ...Done! (in 0.2126067 secs)
#> Exporting airports in 50000 line chunks:
#> ...Done! (in 0.1172004 secs)
#> Exporting flights in 50000 line chunks:
#> ...Done! (in 7.253354 secs)
#> Exporting planes in 50000 line chunks:
#> ...Done! (in 0.2520444 secs)
#> Exporting weather in 50000 line chunks:
#> ...Done! (in 0.5893607 secs)
Note several constraints on this design. The write method must be able to take a generic R connection
object (which will allow it to handle the compression methods used, if any), and the read method must be able to take a textConnection
object. readr
functions handle these cases out of the box, so the above method is easy to write. Also note that the write method must be able to append
, i.e. it should use a header if append=TRUE
, but omit when it is FALSE
. See the built-in methods for more examples.
unark
can read from a variety of compression formats recognized by base R: bzip2
, gzip
, zip
, and xz
, and ark
can choose any of these as the compression algorithm. Note that there is some trade-off between speed of compression and efficiency (i.e. the final file size). ark
uses the bz2
compression algorithm by default, supported in base R, to compress tsv
files. The bz2
offers excellent compression levels, but is considerably slower to compress than gzip
or zip
. It is comparably fast to uncompress. For faster archiving when maximum file size reduction is not critical, gzip
will give nearly as effective compression in significantly less time. Compression can also be turned off, e.g. by using ark()
with compress="none"
and unark()
with files that have no compression suffix (e.g. *.tsv
instead of *.tsv.gz
).
Once you have archived your database files with ark
, consider sharing them privately or publicly as part of your project GitHub repo using the piggyback
R package. For more permanent, versioned, and citable data archiving, upload your *.tsv.bz2
files to a data repository like Zenodo.org.