StatPerMeCo: Statistical Performance Measures to Evaluate Covariance Matrix
Estimates
Statistical performance measures used in the econometric literature to evaluate conditional covariance/correlation matrix estimates (MSE, MAE, Euclidean distance, Frobenius distance, Stein distance, asymmetric loss function, eigenvalue loss function and the loss function defined in Eq. (4.6) of Engle et al. (2016) <doi:10.2139/ssrn.2814555>). Additionally, compute Eq. (3.1) and (4.2) of Li et al. (2016) <doi:10.1080/07350015.2015.1092975> to compare the factor loading matrix. The statistical performance measures implemented have been previously used in, for instance, Laurent et al. (2012) <doi:10.1002/jae.1248>, Amendola et al. (2015) <doi:10.1002/for.2322> and Becker et al. (2015) <doi:10.1016/j.ijforecast.2013.11.007>.
Version: |
0.1.0 |
Published: |
2017-04-14 |
Author: |
Carlos Trucios |
Maintainer: |
Carlos Trucios <ctrucios at gmail.com> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
no |
CRAN checks: |
StatPerMeCo results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=StatPerMeCo
to link to this page.