
Package ‘SSDL’
March 10, 2021

Type Package

Title Sketched Stochastic Dictionary Learning

Version 1.1

Date 2021-03-03

Maintainer Olga Permiakova <olga.permiakova@gmail.com>

Description Toolbox for learning a dictionary from large-scale data collection
using the Sketched Stochastic Dictionary Learning method (see Permiakova O, Burger T.
``Sketched Stochastic Dictionary Learning for large-scale data and application to large-scale
mass spectrometry data'', 2021). It includes the routines for the dictionary initialization.

License GPL (>= 2)

Encoding UTF-8

Depends R (>= 3.6)

Imports Rcpp, bigstatsr (>= 1.2.3), chickn (>= 1.2.3), RcppParallel,
glmnet, parallel, foreach, doParallel, doRNG, reshape2, stats,
utils, pracma, Rdpack

LinkingTo Rcpp, RcppArmadillo, RcppParallel, rmio

SystemRequirements C++11

RoxygenNote 7.1.1

RdMacros Rdpack

NeedsCompilation yes

Author Olga Permiakova [aut, cre],
Thomas Burger [aut]

Repository CRAN

Date/Publication 2021-03-10 19:40:08 UTC

R topics documented:
CDL . 2
COMP_initialization . 5
Gradient_COMP_cpp . 7

1

2 CDL

Gradient_D_cpp_parallel . 8
ObjFun_COMP_cpp . 9
SSDL . 10
TV_initialization . 10

Index 12

CDL Compressive Dictionary Learning

Description

Implementation of the Sketched Stochastic Dictionary Learning (SSDL) method, which learns a
dictionary from a large-scale matrix-like dataset by operating on a compressed version of data
(a.k.a. data sketch).

Usage

CDL(
Data,
K,
SK_Data = NULL,
Frequencies = NULL,
D = NULL,
pos.dic = TRUE,
learn_rate = 0.1,
alpha = 0.9,
gamma = 0,
maxEpoch = 5,
batch_size,
lambda = 0,
ncores = 1,
typeOptim = "Nesterov",
DIR_tmp = tempdir(),
grad_t_1 = NULL,
verbose = 0,
m = nrow(Frequencies),
...

)

Arguments

Data is a Filebacked Big Matrix s×N with data vectors stored in the matrix columns.

K is a dictionary size.

SK_Data is a data sketch. It is a 2m-dimensional complex vector. The first m coordinates
correspond to the real parts and the last m coordinates to the imaginary parts. If
it is NULL, the sketch is computed using Sketch function of chickn package.

https://CRAN.R-project.org/package=chickn

CDL 3

Frequencies is a frequency matrixm×swith frequency vectors in the matrix rows. If NULL,
the frequencies are generated using GenerateFrequencies function of chickn
package.

D is an initial dictionary. If it is NULL, the dictionary is initialized by random
selection of K signals from Data and it is saved in the DIR_tmp directory.

pos.dic indicates whether the dictionary is positive (default) or not.

learn_rate is a learning rate value. The default value is 0.1.

alpha is a momentum weight.

gamma is a decay parameter. The default value is 0, which corresponds to the constant
learning rate.

maxEpoch is a number of epochs.

batch_size is a batch size.

lambda is a regularization parameter.

ncores is a number of cores. The default value is 1.

typeOptim is a type of the optimization scheme used in the dictionary update. Possible val-
ues are c(’Nesterov’, ’Momentum’). It is suggested to use ’Nesterov’ scheme.

DIR_tmp is a directory to save the initial dictionary and intermediate results.

grad_t_1 is an initial momentum matrix. By default it is NULL, and it is initialized as a
zero matrix.

verbose controls how much output is shown and saved during the optimization process.
Possible values:

• 0 no output (default value)
• 1 show iteration number and value of objective function
• 2 1 + save a dictionary and a momentum matrix at the end of each epoch.

m is a number of the frequency vectors.

... are additional parameters passed to GenerateFrequencies function.

Details

CDL builds a dictionary by alternating two steps: calculating the code matrix that contains the
weights of the dictionary elements, and updating the dictionary. For computational efficiency, the
code matrix is computed only for a randomly selected subset of data vectors x1, . . . , xn (a.k.a.
batch). The code matrix is obtained as a solution of the following optimization problem: min

A∈R+
K×n

∑n
i=1 ‖xi−

D · αi‖2 + λ · ‖αi‖1, where n denotes a batch size, A = {α1, . . . , αn} is a code matrix and λ is a
regularization parameter which defines the data sparsity level.

The dictionary is updated by taking one step along the gradient of the objective function F (D,A) =
‖SK(Data)−SK(A·D)‖2. Two gradient descent update rules are available: Nesterov accelerated
and momentum.

SK(·) is a sketch operator, which compresses a matrix into a fixed size complex vector referred
to as a data sketch. It has been introduced in Keriven N, Bourrier A, Gribonval R, Pérez P (2018).
“Sketching for large-scale learning of mixture models.” Information and Inference: A Journal of
the IMA, 7(3), 447–508. and it is defined as SK(Data) = 1

N

∑N
i=1 exp (−1i ·W · xi), where W

https://CRAN.R-project.org/package=chickn

4 CDL

is a frequency matrix and x1, . . . , xN are data vectors. The data compression is performed using
routines from chickn package.

CDL allows also to use the decaying learning rate, i.e. learn_ratet = learn_rate
1+(t−1)·gamma , where t is

the iteration number.

Value

a list

• D is the obtained dictionary,

• objFunProcess is objective function values computed at the end of each iteration,

• learning_rate is learning rate values.

References

• Permiakova O, Burger T (2021). “Sketched Stochastic Dictionary Learning for large-scale
data and application to large-scale mass spectrometry data.” under revision in the Statistical
analysis and data mining journal.

• Permiakova O, Guibert R, Kraut A, Fortin T, Hesse A, Burger T (2021). “CHICKN: extraction
of peptide chromatographic elution profiles from large scale mass spectrometry data by means
of Wasserstein compressive hierarchical cluster analysis.” BMC bioinformatics, 22(1), 1–30.

See Also

Gradient_D_cpp_parallel, chickn, chickn::Sketch, chickn::GenerateFrequencies

Examples

X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::as_FBM(X)$save()
W = chickn::GenerateFrequencies(Data = X_fbm, m = 64, N0 = ncol(X_fbm),

ncores = 1, niter= 3, nblocks = 2, sigma_start = 0.001)$W
SK= chickn::Sketch(X_fbm, W)
D = CDL(Data = X_fbm, K = 10, SK_Data = SK, Frequencies = W,

D = NULL, pos.dic = TRUE, maxEpoch = 3, batch_size = 50,
lambda = 0, learn_rate = 0.1, alpha = 0.9,
gamma = 0, ncores = 2, DIR_tmp = tempdir(),
verbose=0, typeOptim = "Nesterov")$D

https://CRAN.R-project.org/package=chickn
https://CRAN.R-project.org/package=chickn

COMP_initialization 5

COMP_initialization COMP dictionary initialization

Description

Dictionary initialization using the Compressive Orthogonal Matching Pursuit (COMP) method

Usage

COMP_initialization(
K,
Data,
SK_Data = NULL,
Frequencies = NULL,
lower = -Inf,
upper = Inf,
maxIter = 1500,
HardThreshold = FALSE,
print_level = 0,
ncores = 1,
m = nrow(Frequencies),
...

)

Arguments

K is a dictionary size.

Data is a Filebacked Big Matrix s×N with data vectors stored in the matrix columns.

SK_Data is a data sketch. It is a 2m-dimensional complex vector. The first m coordinates
correspond to the real parts and the last m coordinates to the imaginary parts. If
it is NULL, the sketch is computed using Sketch function of chickn package.

Frequencies is a frequency matrixm×swith frequency vectors in the matrix rows. If NULL,
the frequencies are generated using GenerateFrequencies function of chickn
package.

lower is a lower boundary. It is an s-dimensional vector.

upper is an upper boundary. It is an s-dimensional vector.

maxIter is a maximum number of iterations in the computation of new dictionary ele-
ment. The default value is 1500.

HardThreshold indicates whether to execute the hard thresholding step. The default is FALSE.

print_level controls how much output is shown during the optimization process. Possible
values:

• 0 no output (default value)
• 1 show iteration number and value of objective function
• 2 1 + show values of weights

https://CRAN.R-project.org/package=chickn
https://CRAN.R-project.org/package=chickn

6 COMP_initialization

ncores is a number of cores. The default value is 1.

m is a number of the frequency vectors.

... are additional parameters passed to GenerateFrequencies function.

Details

The initialization routine is based on the Compressive Orthogonal Matching Pursuit (COMP) algo-
rithm. COMP is an iterative greedy method that builds a dictionary operating on a compressed data
version (a.k.a. data sketch). It alternates between expanding the dictionary D with a new element
di, whose sketch SK(di) is the most correlated to the residue, and calculating the weights of the
dictionary elements w1, . . . , wK by minimizing the difference between the data sketch SK(Data)

and a linear combination of dictionary sketches, i.e. ‖SK(Data) −
∑K
i=1 wi · SK(di)‖. Un-

like COMP, the implemented dictionary initialization routine does not perform an additional global
optimization with respects to both variables: weights and dictionary elements.

Value

a list

• D is the obtained dictionary,

• weights is the resulting weights,

• ObjF is the objective function values computed at each iteration.

• Sketch is the data sketch

• Frequencies is the frequency matrix

Note

COMP method has been presented in Keriven N, Tremblay N, Traonmilin Y, Gribonval R (2017).
“Compressive K-means.” In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 6369–6373. IEEE.

See Also

ObjFun_COMP_cpp, Gradient_COMP_cpp, chickn::Sketch, chickn::GenerateFrequencies, chickn

Examples

X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
lb = apply(X, 1, min)
ub = apply(X, 1, max)
X_fbm = bigstatsr::FBM(init = X, ncol = ncol(X), nrow = nrow(X))
m = 64
W = chickn::GenerateFrequencies(Data = X_fbm, m = m, N0 = ncol(X_fbm),

ncores = 1, niter= 3, nblocks = 2, sigma_start = 0.001)$W
SK= chickn::Sketch(X_fbm, W)
D0 = COMP_initialization(K = 10, Data = X_fbm, SK_Data = SK, Frequencies = W,

lower = lb, upper = ub)$Dictionary

https://CRAN.R-project.org/package=chickn

Gradient_COMP_cpp 7

Gradient_COMP_cpp COMP Gradient

Description

The gradient of the objective function from the Compressive Orthogonal Matching Pursuit with
respect to a dictionary element.

Usage

Gradient_COMP_cpp(d, W, residue)

Arguments

d is a dictionary element

W is a frequency matrix m× s with frequency vectors in matrix rows.

residue is a residue vector.

Details

Gradient_COMP_cpp computes the gradient of the objective function OF (d) = − SK(d)·r
‖SK(d)‖ , where

SK(d) denotes a sketch of the dictionary element d and r is the residue vector. The gradient is given
as ∇dOF (d) = −G(SK(d),y,W)

‖SK(d)‖ , where a vector y = r −
(
r> · SK(d)

)
· SK(d) and a function

G(x, y,W) is given as: G(x, y,W) = (x[1 : m]� y[m+ 1 : 2m]− x[m+ 1]� y[1 : m])
> ·W ,

where � denotes an element-wise vector multiplication.

Value

a gradient vector

See Also

ObjFun_COMP_cpp, COMP_initialization

Examples

X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::as_FBM(X)$save()
W = chickn::GenerateFrequencies(Data = X_fbm, m = 64, N0 = ncol(X_fbm),

ncores = 1, niter= 3, nblocks = 2, sigma_start = 0.001)$W
SK= chickn::Sketch(X_fbm, W)
D = X_fbm[, sample(ncol(X_fbm), 10)]
weights = sample(10, 10)/10
SK_D = rbind(cos(W%*%D), sin(W%*%D))
d = D[,1]
r = SK - SK_D%*%weights
Grad = Gradient_COMP_cpp(d, W, r)

8 Gradient_D_cpp_parallel

Gradient_D_cpp_parallel

Gradient_D_cpp_parallel

Description

Parallel computation of the gradient with respect to a dictionary matrix and the objective function
computation.

Usage

Gradient_D_cpp_parallel(D, A, W, SK, ComputeGrad = TRUE)

Arguments

D is a dictionary s×K.

A is a code matrix K × n.

W is a frequency matrix m× s with frequency vectors in matrix rows.

SK is a data sketch. It is a 2m-dimensional vector.

ComputeGrad indicates whether to compute the gradient or only the objective function value

Details

The objective function is given as ‖SK − SK(D · A)‖2, where SK is a data sketch, A =
{α1, . . . , αn} is a code matrix and SK(D · A) denotes a decomposition sketch, which is defined
as: SK(D ·A) = 1

n [
∑n
i=1 cos(W ·D · αi),

∑n
i=1 sin(W ·D · αi)]. The gradient of this objective

function with respect to a dictionary element dl ∈ Rs is given as: −2 (∇dlSK(D ·A))> · r, where
r = SK − SK(D · A), δ

δdl
SKj(D · A) = 1i ·

(
1
n

∑n
i=1Ali ·

∏K
k=1 SK

j(Aki · dk)
)
· w>j , and

SKj(·) is the jth coordinate of the sketch vector.

Value

a list

• grad is a computed gradient

• ObjFun is a objective function value

• diff is a vector of the difference between the data sketch and the decomposition sketch

Examples

RcppParallel::setThreadOptions(numThreads = 2)
X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::as_FBM(X)$save()
W = chickn::GenerateFrequencies(Data = X_fbm, m = 64, N0 = ncol(X_fbm),

ncores = 1, niter= 3, nblocks = 2, sigma_start = 0.001)$W
SK= chickn::Sketch(X_fbm, W)

ObjFun_COMP_cpp 9

D = X_fbm[, sample(ncol(X_fbm), 10)]
A = sapply(sample(ncol(X_fbm), 5), function(i){

as.vector(glmnet::glmnet(x = D, y = X_fbm[,i],
lambda = 0, intercept = FALSE, lower.limits = 0)$beta)})

G = Gradient_D_cpp_parallel(D, A, W, SK)$grad

ObjFun_COMP_cpp COMP objective function

Description

Computation of the objective function from the Compressive Orthogonal Matching Pursuit algo-
rithm.

Usage

ObjFun_COMP_cpp(d, W, residue)

Arguments

d is a dictionary element

W is a frequency matrix m× s with frequency vectors in matrix rows.

residue is a residue vector.

Details

The objective function of the Compressive Orthogonal Matching Pursuit is defined as: − SK(d)·r
‖SK(d)‖ ,

where SK(d) denotes a sketch of the dictionary element d and r is the residue vector, which is
defined as the difference between the data sketch SK and the weighted sum of the dictionary ele-
ments’ sketches, i.e. SK −

∑K
i=1 βi ·SK(di). This function is involved in COMP_initialization

routine.

Value

an objective function value

See Also

COMP_initialization, Gradient_COMP_cpp

Examples

X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::as_FBM(X)$save()
W = chickn::GenerateFrequencies(Data = X_fbm, m = 64, N0 = ncol(X_fbm),

ncores = 1, niter= 3, nblocks = 2, sigma_start = 0.001)$W
SK= chickn::Sketch(X_fbm, W)
D = X_fbm[, sample(ncol(X_fbm), 10)]

10 TV_initialization

weights = sample(10, 10)/10
SK_D = rbind(cos(W%*%D), sin(W%*%D))
d = D[,1]
r = SK - SK_D%*%weights
OF = ObjFun_COMP_cpp(d, W, r)

SSDL SSDL-package

Description

R package SSDL implements the Sketched Stochastic Dictionary Learning method that builds a
dictionary from large-scale data collection by operating on a compressed data version referred to
as a data sketch. The chickn package is used to carry out the data compression. SSDL package is
designed to handle voluminous data encoded as a matrix, which cannot be loaded in memory. To
do this, SSDL package relies on the Filebacked Big Matrix class of bigstatsr package, which allows
to access and manipulate matrix-like data stored in files on disk.

Author(s)

Olga Permiakova, Thomas Burger

See Also

CDL

TV_initialization TV norm dictionary initialization

Description

Dictionary initialization using a TV norm criterion

Usage

TV_initialization(
Data,
K,
cutoff = 0.5,
Npattern = 8,
set_size = ncol(Data),
DoCopies = FALSE,
ncores = 4,
DIR_tmp = tempdir()

)

https://CRAN.R-project.org/package=chickn
https://github.com/privefl/bigstatsr

TV_initialization 11

Arguments

Data is a Filebacked Big Matrix s×N with data vectors stored in the matrix columns.

K is a dictionary size.

cutoff is a cut off value, the default value is 0.5.

Npattern is a number of patterns selected in the dataset to create the dictionary

set_size is a maximum size of the set of possible patterns.

DoCopies indicates whether to duplicate patterns.

ncores is a number of cores

DIR_tmp is a directory to save temporary files

Details

The dictionary is initialized by extracting and duplicating patterns with the highest TV norm values
To limit the set of possible patterns, only signals with the correlation less then a fixed threshold
cutoff are taken into account. If the set of possible patterns is too large, it can be further reduced
by taking only set_size less correlated patterns. The implemented initialization routine can only
be applied to positive value data.

Value

a dictionary matrix

Examples

X = matrix(abs(rnorm(n = 1000)), ncol = 100, nrow = 10)
X_fbm = bigstatsr::FBM(init = X, ncol = ncol(X), nrow = nrow(X))
D0 = TV_initialization(X_fbm, K = 20, Npattern = 5, DoCopies = TRUE, ncores = 1)

Index

CDL, 2, 10
COMP_initialization, 5, 7, 9

GenerateFrequencies, 3, 6
Gradient_COMP_cpp, 6, 7, 9
Gradient_D_cpp_parallel, 4, 8

ObjFun_COMP_cpp, 6, 7, 9

SSDL, 10

TV_initialization, 10

12

	CDL
	COMP_initialization
	Gradient_COMP_cpp
	Gradient_D_cpp_parallel
	ObjFun_COMP_cpp
	SSDL
	TV_initialization
	Index

