Here we provide tools for the estimation of coefficients in penalized regressions when the (co)variance matrix of predictors and the covariance vector between predictors and response, are provided. These methods are extended to the context of a Selection Index (commonly used for breeding value prediction). The approaches offer opportunities such as the integration of high-throughput traits in genetic evaluations ('Lopez-Cruz et al., 2020') <doi:10.1038/s41598-020-65011-2> and solutions for training set optimization in Genomic Prediction ('Lopez-Cruz & de los Campos, 2021') <doi:10.1093/genetics/iyab030>.
Version: | 1.1.0 |
Depends: | R (≥ 3.5) |
Imports: | stats |
LinkingTo: | float |
Suggests: | BGLR, float, knitr, rmarkdown, ggplot2, parallel, reshape2, viridis, igraph |
Published: | 2022-03-10 |
Author: | Marco Lopez-Cruz [aut, cre], Gustavo de los Campos [aut], Paulino Perez-Rodriguez [ctb] |
Maintainer: | Marco Lopez-Cruz <maraloc at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | yes |
Citation: | SFSI citation info |
Materials: | NEWS |
CRAN checks: | SFSI results |
Reference manual: | SFSI.pdf |
Vignettes: |
Documentation: Lopez-Cruz et. al. (2020) Sci. Rep. 10:8195) Documentation: Lopez-Cruz and de los Campos (2021) Genetics 218(1):1-10 |
Package source: | SFSI_1.1.0.tar.gz |
Windows binaries: | r-devel: SFSI_1.1.0.zip, r-release: SFSI_1.1.0.zip, r-oldrel: SFSI_1.1.0.zip |
macOS binaries: | r-release (arm64): SFSI_1.1.0.tgz, r-oldrel (arm64): SFSI_1.1.0.tgz, r-release (x86_64): SFSI_1.1.0.tgz, r-oldrel (x86_64): SFSI_1.1.0.tgz |
Old sources: | SFSI archive |
Please use the canonical form https://CRAN.R-project.org/package=SFSI to link to this page.