MachineShop News
Version Updates
3.5.0
- Add argument
method
to r2()
for
calculation of Pearson or Spearman correlation.
- Add
predict()
S4 method for
MLModelFit
.
- Export
MLModelFunction()
.
- Export
as.MLInput()
methods for MLModelFit
and ModelSpecification
.
- Export
as.MLModel()
method for
ModelSpecification
.
- Improve recursive feature elimination of
SelectedInput
terms.
- Improve speed of
StackedModel
and
SuperModel
.
- Internal changes
- Add
.MachineShop
list attribute to
MLModelFit
.
- Move field
mlmodel
in MLModelFit
to
model
in .MachineShop
.
- Move slot
input
in MLModel
to
.MachineShop
.
- Pass
.MachineShop
to the predict
and
varimp
slot functions of MLModel
.
3.4.3
- Fix
TypeError
in dependence()
with numeric
dummy variables from recipes.
- Prep
ModelRecipe
with retain = TRUE
for
recipe steps that are skipped, for example, when test datasets are
created.
- Add generalized area under performance curves to
auc()
,
pr_auc()
, and roc_auc()
for multiclass factor
responses.
3.4.2
- Add argument
select
to rfe()
.
- Fix object
perf_stats
not found in
optim()
.
3.4.1
- Add argument
conf
to
set_optim_bayes()
.
- Enable global grid expansion and tuning of
StackedModel
and SuperModel
in ModelSpecification()
.
3.4.0
- Fixes
- Enable prediction with survival times of 0.
- Implement class
SelectedModelSpecification
.
- Internal changes
- Deprecate classes
ModeledInput
,
ModeledFrame
, and ModeledRecipe
.
- Remove unused class
TunedModeledRecipe
.
- Expire deprecations
- Remove argument
fixed
from
TunedModel()
.
- Remove
Grid()
.
- Rename
rpp()
to ppr()
.
- Replace
ModeledInput()
with
ModelSpecification()
.
- Require R >= 4.0.0.
- Use Olden algorithm for
NNetModel
model-specific
variable importance.
3.3.1
- Fixes
SurvRegModelFit
summary()
error
- update number of folds recorded in
CVControl
when
stratification or grouping size leads to construction of fewer than
requested folds for cross-validation resampling
3.3.0
- Add argument
.type
with options "glance"
and "tidy"
to summary.MLModelFit()
.
- Add case components data (stratification and grouping variables) to
print.Resample()
.
- Add class and methods for
ModelSpecification
.
- Add training parameters set functions
set_monitor()
: monitoring of resampling and
optimization
set_optim_bayes()
: Bayesian optimization with a
Gaussian process model
set_optim_bfgs()
: low-memory quasi-Newton BFGS
optimization
set_optim_grid()
: exhaustive and random grid
searches
set_optim_method()
: user-defined optimization
functions
set_optim_pso()
: particle swarm optimization
set_optim_sann()
: simulated annealing
- Add
performance()
method for MLModel
to
replicate the previous behavior of summary.MLModel()
.
- Add
performance()
, plot()
, and
summary()
methods for TrainingStep
.
- Add support for unordered plots of
Resample
performances.
- Changes to argument
type
of predict()
.
- Add option
"default"
for model-specific default
predictions.
- Add option
"numeric"
for numeric predictions.
- Change option
"prob"
to be for probabilities between 0
and 1.
- Change
confusion()
default behavior to convert factor
probabilities to levels.
- Rename argument
control
to object
in set
functions.
- Rename argument
f
to fun
in
roc_index()
.
- Return a
ListOf
training step summaries from
summary.MLModel()
.
- Return a
TrainingStep
object from
rfe()
.
- Support tibble-convertible objects as arguments to
expand_params()
.
- Internal changes
- Add class
EnsembleModel
.
- Add classes
MLOptimization
, GridSearch
,
NullOptimization
, RandomGridSearch
, and
SequentialOptimization
.
- Add class
NullControl
.
- Add slot
control
to PerformanceCurve
.
- Add slot
method
to TrainingStep
.
- Add slot
optim
to TrainingParams
.
- Add slot
params
to MLInput
.
- Inherit class
SelectedModel
from
EnsembleModel
.
- Inherit class
StackedModel
from
EnsembleModel
.
- Inherit class
SuperModel
from
StackedModel
.
- Rename slot
case_comps
to vars
in
Resample
.
- Rename slot
grid
to log
in
TrainingStep
.
- Fixes
- error predicting single factor response in
GLMModel
- ‘size(x@performance, 3)’ error in
print.TrainingStep()
- ‘Unmatched tuning parameters’ error in
TunedModel()
3.2.1
- Fix ‘data’ argument of wrong type error in
terms.formula()
.
- Require >= 3.1.0 version of cli package.
3.2.0
- Add argument
distr
and method
to
dependence()
.
- Add function
ParsnipModel()
for model specifications
(model_spec
) from the parsnip
package.
- Add function
rfe()
for recursive feature
elimination.
- Add method
as.MLModel()
for model_spec
and
ModeledInput
.
- Add support for any model specification whose object has an
as.MLModel()
method.
- Add support for cross-validation with case groups.
- Add support for names in argument
metric
of
auc()
.
- Change argument
method
default from
"model"
to "permute"
in
varimp()
.
- Change class
ModelFrame
to an S4 class; generally
requires explicit conversion to a data frame with
as.data.frame()
in MLModel
fit
and predict
functions.
- Change progress bar display from elapsed to estimated completion
time.
- Changes to global settings
- Rename
stat.Trained
to
stat.TrainingParams
.
- Remove
stats.VarImp
.
- Changes to internal classes
- Add class
ParsnipModel
.
- Add class
SurvTimes
.
- Add class
TrainingParams
.
- Add class union
Grid
.
- Add class union
Params
.
- Add column
name
, selected
, and
metrics
to slot grid
of
TrainingStep
class.
- Add slot
grid
to TunedInput
.
- Add slot
id
to MLInput
and
MLModel
classes.
- Add slot
id
and name
to
TrainingStep
class.
- Add slot
models
to SelectedModel
.
- Remove slot
name
from MLControl
classes.
- Remove slot
selected
, values
, and
metric
from TrainingStep
class.
- Remove slot
shift
from VariableImportance
class.
- Rename class
Grid
to TuningGrid
.
- Rename class
Resamples
to Resample
.
- Rename class
TrainStep
to
TrainingStep
.
- Rename class
VarImp
to
VariableImportance
.
- Rename classes of
MLControl
.
MLBootControl
→ BootControl
MLBootOptimismControl
→
BootOptimismControl
MLCVControl
→ CVControl
MLCVOptimismControl
→
CVOptimismControl
MLOOBControl
→ OOBControl
MLSplitControl
→ SplitControl
MLTrainControl
→ TrainControl
- Rename column
Input
and Model
to
params
in slot grid
of
TrainingStep
class.
- Rename column
Resample
to Iteration
in
Resample
class
- Rename slot
x
to input
in
MLModel
class.
- Changes to
XGBModel
- Change argument default for
nrounds
from 1 to 100.
- Rearrange constructor arguments.
- Reduce number of tuning grid parameters
- Include
nrounds
and max_depth
in automated
grids for XGBDARTModel
and XGBTreeModel
.
- Include
nrounds
, lambda
, and
alpha
in automated grid for
XGBLinearModel
.
- Compute survival probabilities for
survival:aft
prediction.
- Change default survival objective from
survival:cox
to
survival:aft
.
- Format and condense printout of objects.
- Include all computed performance metrics in
TrainingStep
objects and output.
- Remove shift from variable importance scaling in
varimp()
.
- Rename and redefine dispatch (first) arguments in functions.
model
→ object
in
TunedModel()
x
→ object
in
expand_model()
x
→
formula
/input
/model
in
expand_modelgrid()
, fit()
,
ModelFrame()
, resample()
, rfe()
methods
x
→
formula
/object
/model
in
ModeledInput()
methods
x
→ object
in ParameterGrid()
methods
x
→ control
in set_monitor()
,
set_predict()
, set_strata()
x
→ object
in
TunedInput()
- Rename function
Grid()
to
TuningGrid()
.
- Reorder optional arguments in
ModelFrame()
.
- Save model constructor arguments as the list elements in
MLModel
params
slots.
3.1.0
- Add argument
na.rm
to dependence()
.
- Add global setting
stats.VarImp
for summary statistics
to compute on permutation-based variable importance.
- Add permutation-based variable importance to
varimp()
.
- Sort variable importance by first column only if not scaled.
- Correct the estimated variances for cross-validation estimators of
mean performance difference in
t.test.PerformanceDiff()
.
- Rename argument
metric
to type
in
varimp()
functions for BartMachineModel
,
C50Model
, EarthModel
, RFSRCModel
,
and XGBModel
.
- Set argument
type
default to "nsubsets"
in
EarthModel
varimp()
.
- Expand case weighted metrics support.
- Fix weights used in survival event-specific metrics.
- Use weights for
cross_entropy()
numeric
method.
- Use weights for predicted survival probabilities.
- Fix error with argument
f
in roc_index()
Surv
method.
3.0.0
- Add slot
weights
to MLModel
classes.
- Allow case weights in
LMModel
for all response
types.
- Exclude infinite values from calculation of
breaks
in
calibration()
.
- Fix invalid
max = Inf
arguments to
print.default()
.
- Add support for case weights in performance metrics and curves.
- Evaluate
ModelFrame()
arguments strata
and
weights
in data
environment.
- Fix issue introduced in package version 2.9.0 of recipe case weights
not being used in model fitting.
- Add column
Weight
of case weights to
Resamples
data frame.
- Rename
values
column to get_values
in
MLModel
gridinfo
slot.
- Move global settings
resample_progress
and
resample_verbose
to set_monitor()
arguments
progress
and verbose
.
- Move
MLControl()
arguments strata_breaks
,
strata_nunique
, strata_prop
, and
strata_size
to set_strata()
arguments
breaks
, nunique
, prop
, and
size
.
- Move
MLControl()
arguments times
,
distr
, and method
to
set_predict()
.
- Export
%>%
operator.
- Return case stratification values in the ‘strata’ slot of
Resamples
objects.
2.9.0
- Rename tibble column
regular
to default
in
MLModel
gridinfo slot.
- Redefine
size
and random
arguments of
ParameterGrid()
to match those of Grid()
.
- Revise selection of character values in model grids.
- Select
coeflearn
values in their defined order instead
of at random in AdaBoostModel
.
- Select
kernels
values in their defined order instead of
at random in KNNModel
.
- Add survival
splitrule
methods in
RangerModel
.
- Select
splitrule
values in their defined order instead
of at random in RangerModel
.
- Revise global settings names.
- Rename
max.print
to print_max
.
- Rename
progress.resample
to
resample_progress
.
- Rename
stat.train
to stat.Trained
.
- Rename
dist.Surv
to distr.SurvMeans
.
- Rename
dist.SurvProbs
to
distr.SurvProbs
.
- Implement customized stratification methods for resampling.
- Stratify survival data by time within event status by default
instead of by event status only.
- Add
strata_breaks
, strata_nunique
,
strata_prop
and strata_size
arguments to
MLControl()
constructor.
- Reduce
strata_breaks
if numeric quantile bins are below
strata_prop
and strata_size
.
- Pool smallest factor levels below
strata_prop
and
strata_size
iteratively.
- Pool smallest adjacent ordered levels below
strata_prop
and strata_size
iteratively.
- Remove deprecated
length
arguments from
Grid()
and ParameterGrid()
.
- Drop compatibility with deprecated
gridinfo
functions
in MLModel()
.
- New and improved survival analysis methods.
- Add support for counting process survival data.
- Use model weights in estimation of predicted baseline survival
curves.
- Change censoring curve estimation method from direct to cumulative
hazard-based in the
brier()
metric.
- Improve computational speed of survival curve estimation.
- Remove
"fleming-harrington"
as a choice for the
method
argument of predict()
and for the
method.EmpiricalSurv
global setting, because it is a
special case of the existing (default) "efron"
choice and
thus not needed.
- Add
"rayleigh"
choice for the distr.Surv
and distr.SurvProbs
global settings.
- Rename
dist
argument to distr
in
calibration()
, MLControl()
,
predict()
, and r2()
.
- Return survival distribution name with predicted values.
- Add
distr
argument to SurvEvents()
and
SurvProbs()
.
- Add
SurvMeans
class.
- Return predicted mean survival times as
SurvMeans
object.
- Default to the distribution used in predicting mean survival times
in
calibration()
and r2()
.
- Rename
"terms"
predictor_encoding to
"model.frame"
in MLModel
class.
- Pass elliptical arguments in
performance()
response
type-specific methods to metrics
supplied as a single
MLMetric
function.
2.8.0
- Replace
get_grid()
with
expand_modelgrid()
.
- Fix for truncated grid of lambda values in
GLMNetModel
.
- Support package version constraints in
MLModel
.
2.7.1
- Rename
traininfo
slot to train_steps
in
MLModel
classes.
- Issue #4: compatibility fix for recipes package
change in behavior of the
retain
argument in
prep()
.
2.7.0
- Sort randomly sampled grid points.
- Change
fixed
argument default NULL
to
list()
in TunedModel()
.
- CRAN release.
2.6.2
- Rename
length
argument to size
in
Grid()
and ParameterGrid()
.
- Add support for named sizes in
ParameterGrid()
.
- Revise model tuning grids.
- Replace
grid
slot with gridinfo
in
MLModel
classes.
- Add support for size vectors in
Grid()
.
- Add
get_grid()
function to extract model-defined tuning
grids.
- Rename
trainbits
slot to traininfo
in
MLModel
classes.
2.6.1
- Doc edits: do not test examples requiring suggested packages.
- CRAN release.
2.6.0
- Preprocess data for automated grid construction only when
needed.
- Select
RPartModel
cp
grid points from
cptable
according to smallest cross-validation error (mean
plus one standard deviation).
- CRAN release.
2.5.2
- Export
Performance
diff()
method.
2.5.1
- Implement fast random forest model
RFSRCModel
.
- Export
unMLModelFit()
function to revert an
MLModelFit
object to its original class.
2.5.0
- Add
options
argument to step_lincomp()
and
step_sbf()
.
- CRAN release.
2.4.3
- Add recipe
step_sbf()
function for variable selection
by filtering.
- Inherit
step_kmedoids
objects from
step_sbf
, and refactor methods.
- Support user-specified center and scale functions.
- Append prefix to selected variable names.
- Rename
tidy()
column medoids
to
selected
.
- Rename
tidy()
column names
to
name
.
- Set
tidy()
non-selected variable names to
NA
.
- Add recipe
step_lincomp()
function for linear
components variable reduction.
- Inherit
step_kmeans
objects from
step_lincomp
, and refactor methods.
- Support user-specified center and scale functions.
- Rename
tidy()
column names
to
name
.
- Inherit
step_spca
objects from
step_lincomp
, and refactor methods.
- Support user-specified center and scale functions.
- Rename
tidy()
column value
to
weight
.
- Rename
tidy()
column component
to
name
.
- Set
GBMModel
distribution to bernoulli, instead of
multinomial, for binary responses.
2.4.2
- Add global setting
RHS.formula
for listing of operators
and functions allowed on right-hand side of traditional formulas.
- Add clara clustering method to
step_kmedoids()
.
- Support Cox and accelerated failure time regression for survival
responses in
XGBModel
, XGBDARTModel
,
XGBLinearModel
, and XGBTreeModel
.
2.4.1
- Set
NNetModel
linout
argument
automatically according to the response variable type (numeric:
TRUE
, other: FALSE
). Previously,
linout
had a default value of FALSE
as defined
in the nnet
package.
2.4.0
2.3.2
- Display progress bars for sequential resampling iterations.
2.3.1
- R 4.0 data.frame compatibility updates for calibration curves.
- Fix recipe prediction with StackedModel and SuperModel
2.3.0
- Display progress messages for any foreach parallel backend.
2.2.5
- Show all error messages when resample selection stops.
- Preserve predictor names in
NNetModel
fit()
method.
- Fix aggregation of performance curves with infinite values.
- Add progress bar and verbose output options for
resample()
methods.
- Get non-negative probabilities for survival confusion matrix.
- Update Using webpages and vignette.
2.2.4
- Fix
BARTMachineModel
to predict highest binary response
level.
- Grid tune
BARTMachineModel
nu
parameter
for numeric responses only.
2.2.3
- Extend
ModeledInput()
to
SelectedModelFrame
, SelectedModelRecipe
, and
TunedModelRecipe
.
2.2.2
- Fix updating of recipe parameters in
TunedInput()
.
2.2.1
- Print
StackedModel
and SuperModel
training
information.
- Fix missing case names when resampling with recipes.
2.2.0
2.1.4
- Add cost-complexity pruning parameters to
TreeModel
.
- Perform stratified resampling automatically for
ModeledInput()
and SelectedInput()
objects
constructed with formulas and matrices.
2.1.3
- Revisions needed to some
fit()
methods to ensure that
unprepped recipes are passed to models, like TunedModed
,
StackedModel
, SelectedModel
and
SuperModel
, needing to replicate preprocessing steps in
their resampling routines.
- Extend
GLMModel
to factor and matrix responses.
- Use
fun
instead of deprecated fun.y
in
ggplot2 functions.
- Capture user-supplied parameters passed in to the ellipsis of model
constructor functions that have them.
2.1.2
- Compatibility fix for tibble 3.0.0.
- Include missing values in model matrices created internally from
formulas.
2.1.1
- Improve specificity of
metricinfo()
results for factor
responses.
- Correct
SplitControl()
to train on the split sample
instead of the full dataset.
- Perform stratified resampling automatically when
fit()
formula and matrix methods are called with meta-models.
2.1.0
2.0.4
- Extend
print()
argument n
to data frame
and matrix columns for more concise display of large data
structures.
- Add preprocessing recipe functions
step_kmeans()
,
step_kmedoids()
, and step_spca()
.
2.0.3
- Internal changes:
- Remove
MLModel
slot y
.
- Rename
ModelFrame
and ModelRecipe
columns
(casenames)
to (names)
.
- Register
ModelFrame
inheritance from
data.frame
.
- Define
Terms
S4 classes for ModelFrame
slot terms
.
2.0.2
- Implement
ModeledInput
, SelectedInput
and
TunedInput
classes and methods.
- Deprecate
SelectedFormula()
,
SelectedMatrix()
, SelectedModelFrame()
,
SelectedRecipe()
, and TunedRecipe()
.
- Remove deprecated
tune()
.
- Rename global setting
stat.Curves
to
stat.Curve
.
2.0.1
- Rename global setting
stat.Train
to
stat.train
.
- Add print methods for
SelectedModel
,
StackedModel
, SuperModel
, and
TunedModel
.
- Revise training methods to ensure nested resampling of
SelectedRecipe
and TunedRecipe
.
- Return list of all training steps in
MLModel
trainbits
slot.
2.0.0
- Rename global setting
stat.Tune
to
stat.Train
.
- Enable selection of formulas, design matrices, and model frames with
SelectedFormula()
, SelectedMatrix()
, and
SelectedModelFrame()
.
- Rename discrete variable classes:
BinomialMatrix
→
BinomialVariate
, DiscreteVector
→
DiscreteVariate
, NegBinomialVector
→
NegBinomialVariate
, and PoissonVector
→
PoissonVariate
.
- Add global setting
require
for user-specified packages
to load during parallel execution of resampling algorithms.
- Rename recipe role
case_strata
to
case_stratum
.
- Rename
object
argument to data
in
ConfusionMatrix()
, SurvEvents()
, and
SurvProbs()
.
- Add
c
methods for BinomialVariate
,
DiscreteVariate
, ListOf
, and
SurvMatrix
.
- Add
role_binom()
, role_case()
,
role_surv()
, and role_term()
to set recipe
roles.
- Support
base
argument to varimp()
for
log-transformed p-values.
- Rename
ParamSet
to ParameterGrid
.
- Add option to
reset
global settings individually.
- Add
as.data.frame
methods for Performance
,
Performance
summary, PerformanceDiff
,
PerformanceDiffTest
, and Resamples
.
1.99.0
- Implement
DiscreteVector
class and subclasses
BinomialVector
, NegBinomialVector
, and
PoissonVector
for discrete response variables.
- Extend model support to
DiscreteVector
classes as
follows.
DiscreteVector
: all models applicable to numeric
responses.
BinomialVector
/NegBinomialVector
/PoissonVector
:
BlackBoostModel
, GAMBoostModel
,
GLMBoostModel
, GLMModel
, and
GLMStepAICModel
.
BinomialVector
/PoissonVector
:
GLMNetModel
.
PoissonVector
: GBMModel
and
XGBModel
- Add support for offset terms in formulas, model matrices, and
recipes.
- Add recipe tune information to fitted
MLModel
.
- Replace
Calibration()
, Confusion()
,
Curves()
, Lift()
, and Resamples()
with c
methods.
- Redefine
Confusion
S3 class as
ConfusionList
S4 class.
- Remove support for one-element list to
metricinfo()
and
modelinfo()
.
- Remove deprecated
expand.model()
.
- Expire deprecated
tune()
.
1.6.4
- Calculate regression variable importance as negative log
p-values.
- Support empty vectors in
metricinfo()
and
modelinfo()
.
- Add support for dials package parameter sets with
ParamSet()
.
1.6.3
- Add
as.MLModel()
for coercing MLModelFit
to MLModel
.
- Deprecate
tune()
; call fit()
with a
SelectedModel
or TunedModel
instead.
1.6.2
- Implement optimism-corrected cross-validation
(
CVOptimismControl
).
- Fix
BootOptimismControl
error with 2D responses.
- Add global option
max.print
for the number of models
and data frame rows to show with print methods.
- Enable recipe selection with
SelectedRecipe()
.
- Refactor
tune()
methods.
- Replace
MLModelFit
element fitbits
(MLFitBits
object) with mlmodel
(MLModel
object).
- Rename
VarImp
slot center
to
shift
.
1.6.1
- Use tibbles for parameter grids.
- Add random sampling option to
expand_model()
,
expand_params()
, and expand_steps()
.
- Display information for model functions and objects more
compactly.
1.6.0
- Add global setting for default cutoff threshold value.
- Add option to reset all global settings.
- Enable recipe tuning with
TunedRecipe()
.
- Add
expand_model()
for model expansion over tuning
parameters.
- Add
expand_params()
for model parameters
expansion.
- Add
expand_steps()
for recipe step parameters
expansion.
- Implement
MLModelFunction
and MLModelList
classes.
- Add fit methods for
MLModel
,
MLModelFunction
, and MLModelList
.
- Fix
NNetModel
fit error with binary and factor
responses.
- Fix
modelinfo()
function not found error.
1.5.2
- Implement exception handling of
tune()
resampling
failures.
- Remove deprecated
types
and design
arguments from MLModel()
.
1.5.1
- Implement global settings for default resampling control,
performance metrics, summary statistics, and tuning grid.
- Support vector arguments in
metricinfo()
and
modelinfo()
.
- Update package documentation.
1.5.0
- Implement model:
SelectedModel
.
- Remove
maximize
argument from tune()
and
TunedModel
.
- Support lists as arguments to
StackedModel()
and
SuperModel
.
1.4.2
- Revert renaming of
expand.model()
.
- Exclude 0 distance from
KNNModel
tuning grid.
- Improve random tuning grid coverage.
1.4.1
- Implement model:
TunedModel
.
- Remove deprecated
na.action
argument from
ModelFrame
methods.
- Rename
MLModel()
argument types
to
response_types
.
- Rename
MLModel()
argument design
to
predictor_encoding
.
- Rename
expand.model()
to
expand_model()
.
1.4.0
1.3.3
- Implement optimism-corrected bootstrap resampling
(
BootOptimismControl
).
- Store case names in
ModelFrame
and
ModelRecipe
and save to Resamples
.
1.3.2
- Add
BinaryConfusionMatrix
and
OrderedConfusionMatrix
classes.
- Export
ConfusionMatrix
constructor.
- Extend
metricinfo()
to confusion matrices.
- Refactor performance metrics methods code.
1.3.1
- Check and convert ordered factors in response methods.
- Check consistency of extracted variables in response methods.
- Add metrics methods for
Resamples
.
1.3.0
- Improve compatibility with preprocessing recipes.
- Allow base math functions and operators in
ModelFrame
formulas.
1.2.5
- Save
ModelFrame
response in first column.
- Unexport
response
formula method.
- Add
ICHomes
dataset.
- Add
center
and scale
slot to
VarImp
.
1.2.4
- Prohibit in-line functions in
ModelFrame
formulas.
- Rename
response
function argument from
data
to newdata
.
1.2.3
- Add
fit
, resample
, and tune
methods for design matrices.
- Reduce computational overhead for design matrices and recipes.
- Rename
ModelFrame()
argument na.action
to
na.rm
.
1.2.2
- Implement parametric (
"exponential"
,
"rayleigh"
, "weibull"
) estimation of baseline
survival functions.
- Set
"weibull"
as the default distribution for survival
mean estimation.
- Add extract method for
Resamples
.
- Add
na.rm
argument to calibration()
,
confusion()
, performance()
, and
performance_curve()
.
- Add loess
span
argument to
calibration()
.
- Change
SurvMatrix
from S4 to S3 class.
1.2.1
- Add
method
option to predict()
for
Breslow, Efron (default), or Fleming-Harrington estimation of survival
curves for Cox proportional hazards-based models.
- Add
dist
option to predict()
for
exponential or Weibull approximation to estimated survival curves.
- Add
dist
option to calibration()
for
distributional estimation of observed mean survival.
- Add
dist
option to r2()
for distributional
estimation of the total sum of squares mean.
- Handle unnamed arguments in
metricinfo()
and
modelinfo()
.
1.2.0
- Implement metrics:
auc
, fnr
,
fpr
, rpp
, tnr
,
tpr
.
- Implement performance curves, including ROC and precision
recall.
- Implement
SurvMatrix
classes for predicted survival
events and probabilities to eliminate need for separate
times
arguments in calibration, confusion, metrics, and
performance functions.
- Add calibration curves for predicted survival means.
- Add lift curves for predicted survival probabilities.
- Add recipe support for survival and matrix outcomes.
- Rename
MLControl
argument surv_times
to
times
.
- Fix identification of recipe
case_weight
and
case_strata
variables.
- Launch package website.
- Bring Introduction vignette up to date with package features.
1.1.0
- Implement model:
BARTModel
.
- Implement model tuning over automatically generated grids of
parameter values and random sampling of grid points.
- Add metrics for predicted survival times:
accuracy
,
f_score
, kappa2
, npv
,
ppv
, pr_auc
, precision
,
recall
, roc_index
, sensitivity
,
specificity
- Add metrics for predicted survival means:
cindex
,
gini
, mae
, mse
,
msle
, r2
, rmse
,
rmsle
.
- Add
performance
and metric methods for
ConfusionMatrix
.
- Add confusion matrices for predicted survival times.
- Standardize predict functions to return mean survival when times are
not specified.
- Replace
MLModel
slot and constructor argument
nvars
with design
.
1.0.0
- Implement models:
BARTMachineModel
,
LARSModel
.
- Implement performance metrics:
gini
, multi-class
pr_auc
and roc_auc
, multivariate
rmse
, msle
, rmsle
.
- Implement smooth calibration curves.
- Implement
MLMetric
class for performance metrics.
- Add
as.data.frame
method for
ModelFrame
.
- Add
expand.model
function.
- Add
label
slot to MLModel
.
- Expand
metricinfo/modelinfo
support for mixed argument
types.
- Rename
calibration
argument n
to
breaks
.
- Rename
modelmetrics
function to
performance
.
- Rename
ModelMetrics/Diff
classes to
Performance/Diff
.
- Change
MLModelTune
slot resamples
to
performance
.
0.4.0
- Implement models:
AdaBagModel
,
AdaBoostModel
, BlackBoostModel
,
EarthModel
, FDAModel
,
GAMBoostModel
, GLMBoostModel
,
MDAModel
, NaiveBayesModel
,
PDAModel
, RangerModel
,
RPartModel
, TreeModel
- Implement user-specified performance metrics in
modelmetrics
function.
- Implement metrics:
accuracy
, brier
,
cindex
, cross_entropy
, f_score
,
kappa2
, mae
, mse
,
npv
, ppv
, pr_auc
,
precision
, r2
, recall
,
roc_auc
, roc_index
, sensitivity
,
specificity
, weighted_kappa2
.
- Add
cutoff
argument to confusion
function.
- Add
modelinfo
and metricinfo
functions.
- Add
modelmetrics
method for
Resamples
.
- Add
ModelMetrics
class with print
and
summary
methods.
- Add
response
method for recipe
.
- Export
Calibration
constructor.
- Export
Confusion
constructor.
- Export
Lift
constructor.
- Extend
calibration
arguments to observed and predicted
responses.
- Extend
confusion
arguments to observed and predicted
responses.
- Extend
lift
arguments to observed and predicted
responses.
- Extend
metrics
and stats
function
arguments to accept function names.
- Extend
Resamples
to arguments with multiple
models.
- Change
CoxModel
, GLMModel
, and
SurvRegModel
constructor definitions so that model control
parameters are specified directly instead of with a separate
control
argument/structure.
- Change
predict(..., times = numeric())
function calls
to survival model fits to return predicted values in the same direction
as survival times.
- Change
predict(..., times = numeric())
function calls
to CForestModel
fits to return predicted means instead of
medians.
- Change
tune
function argument metrics
to
be defined in terms of a user-specified metric or metrics.
- Deprecate MLControl arguments
cutoff
,
cutoff_index
, na.rm
, and
summary
.
0.3.0
- Implement linear models (
LMModel
), linear discriminant
analysis (LDAModel
), and quadratic discriminant analysis
(QDAModel
).
- Implement confusion matrices.
- Support matrix response variables.
- Support user-specified stratification variables for resampling via
the
strata
argument of ModelFrame
or the role
of "case_strata"
for recipe variables.
- Support user-specified case weights for model fitting via the role
of
"case_weight"
for recipe variables.
- Provide fallback for models with undefined variable importance.
- Update the importing of
prepper
due to its relocation
from rsample
to recipes
.
0.2.0
- Implement partial dependence, calibration, and lift estimation and
plotting.
- Implement k-nearest neighbors model (
KNNModel
), stacked
regression models (StackedModel
), super learner models
(SuperModel
), and extreme gradient boosting
(XGBModel
).
- Implement resampling constructors for training resubstitution
(
TrainControl
) and split training and test sets
(SplitControl
).
- Implement
ModelFrame
class for general model formula
and dataset specification.
- Add multi-class Brier score to
modelmetrics()
.
- Extend
predict()
to automatically preprocess recipes
and to use training data as the newdata
default.
- Extend
tune()
to lists of models.
- Extent
summary()
argument stats
to
functions.
- Fix survival probability calculations in
GBMModel
and
GLMNetModel
.
- Change
MLControl
argument na.rm
default
from FALSE
to TRUE
.
- Removed
na.rm
argument from
modelmetrics()
.
0.1