MFT: The Multiple Filter Test for Change Point Detection
Provides statistical tests and algorithms for the detection of change points in time series and point processes - particularly for changes in the mean in time series and for changes in the rate and in the variance in point processes. References - Michael Messer, Marietta Kirchner, Julia Schiemann, Jochen Roeper, Ralph Neininger and Gaby Schneider (2014), A multiple filter test for the detection of rate changes in renewal processes with varying variance <doi:10.1214/14-AOAS782>. Stefan Albert, Michael Messer, Julia Schiemann, Jochen Roeper, Gaby Schneider (2017), Multi-scale detection of variance changes in renewal processes in the presence of rate change points <doi:10.1111/jtsa.12254>. Michael Messer, Kaue M. Costa, Jochen Roeper and Gaby Schneider (2017), Multi-scale detection of rate changes in spike trains with weak dependencies <doi:10.1007/s10827-016-0635-3>. Michael Messer, Stefan Albert and Gaby Schneider (2018), The multiple filter test for change point detection in time series <doi:10.1007/s00184-018-0672-1>. Michael Messer, Hendrik Backhaus, Albrecht Stroh and Gaby Schneider (2019+) Peak detection in time series.
Version: |
2.0 |
Published: |
2019-03-11 |
Author: |
Michael Messer, Stefan Albert, Solveig Plomer, Gaby Schneider |
Maintainer: |
Michael Messer <messer at math.uni-frankfurt.de> |
License: |
GPL-3 |
NeedsCompilation: |
no |
CRAN checks: |
MFT results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=MFT
to link to this page.