
RFC 9212
Commercial National Security Algorithm (CNSA)
Suite Cryptography for Secure Shell (SSH)

Abstract
The United States Government has published the National Security Agency (NSA) Commercial
National Security Algorithm (CNSA) Suite, which defines cryptographic algorithm policy for
national security applications. This document specifies the conventions for using the United
States National Security Agency's CNSA Suite algorithms with the Secure Shell Transport Layer
Protocol and the Secure Shell Authentication Protocol. It applies to the capabilities, configuration,
and operation of all components of US National Security Systems (described in NIST Special
Publication 800-59) that employ Secure Shell (SSH). This document is also appropriate for all other
US Government systems that process high-value information. It is made publicly available for use
by developers and operators of these and any other system deployments.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Independent Submission
9212
Informational
March 2022
2070-1721

 N. Gajcowski
NSA

M. Jenkins
NSA

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9212

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Gajcowski & Jenkins Informational Page 1

https://www.rfc-editor.org/rfc/rfc9212
https://www.rfc-editor.org/info/rfc9212

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. The Commercial National Security Algorithm Suite

4. CNSA and Secure Shell

5. Security Mechanism Negotiation and Initialization

6. Key Exchange

6.1. ECDH Key Exchange

6.2. DH Key Exchange

7. Authentication

7.1. Server Authentication

7.2. User Authentication

8. Confidentiality and Data Integrity of SSH Binary Packets

8.1. Galois/Counter Mode

8.2. Data Integrity

9. Rekeying

10. Security Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Authors' Addresses

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 2

https://trustee.ietf.org/license-info

1. Introduction
This document specifies conventions for using the United States National Security Agency's CNSA
Suite algorithms with the Secure Shell Transport Layer Protocol and the Secure
Shell Authentication Protocol . It applies to the capabilities, configuration, and
operation of all components of US National Security Systems (described in NIST Special
Publication 800-59) that employ SSH. This document is also appropriate for all other US
Government systems that process high-value information. It is made publicly available for use by
developers and operators of these and any other system deployments.

[CNSA] [RFC4253]
[RFC4252]

[SP80059]

2. Terminology
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. The Commercial National Security Algorithm Suite
The NSA profiles commercial cryptographic algorithms and protocols as part of its mission to
support secure, interoperable communications for US Government National Security Systems. To
this end, it publishes guidance both to assist with the US Government's transition to new
algorithms and to provide vendors -- and the Internet community in general -- with information
concerning their proper use and configuration.

Recently, cryptographic transition plans have become overshadowed by the prospect of the
development of a cryptographically relevant quantum computer. The NSA has established the
Commercial National Security Algorithm (CNSA) Suite to provide vendors and IT users near-term
flexibility in meeting their information assurance interoperability requirements using current
cryptography. The purpose behind this flexibility is to avoid vendors and customers making two
major transitions (i.e., to elliptic curve cryptography and then to post-quantum cryptography) in
a relatively short timeframe, as we anticipate a need to shift to quantum-resistant cryptography
in the near future.

The NSA is authoring a set of RFCs, including this one, to provide updated guidance concerning
the use of certain commonly available commercial algorithms in IETF protocols. These RFCs can
be used in conjunction with other RFCs and cryptographic guidance (e.g., NIST Special
Publications) to properly protect Internet traffic and data-at-rest for US Government National
Security Systems.

4. CNSA and Secure Shell
Several RFCs have documented how each of the CNSA components are to be integrated into
Secure Shell (SSH):

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 3

kex algorithms:

ecdh-sha2-nistp384
diffie-hellman-group15-sha512
diffie-hellman-group16-sha512

public key algorithms:

ecdsa-sha2-nistp384
rsa-sha2-512

encryption algorithms (both client_to_server and server_to_client):

AEAD_AES_256_GCM

message authentication code (MAC) algorithms (both client_to_server and server_to_client):

AEAD_AES_256_GCM

While the approved CNSA hash function for all purposes is SHA-384, as defined in ,
commercial products are more likely to incorporate the kex algorithms and public key
algorithms based on SHA-512 (sha2-512), which are defined in and . Therefore,
the SHA-384-based kex and public key algorithms be used; SHA-512-based algorithms
be used. Any hash algorithm other than SHA-384 or SHA-512 be used.

Use of the Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) shall meet the
requirements set forth in , with the additional requirements that all 16 octets of the
authentication tag be used as the SSH data integrity value and that AES is used with a 256-
bit key. Use of AES-GCM in SSH should be done as described in , with the exception that
AES-GCM need not be listed as the MAC algorithm when its use is implicit (such as done in aes256-
gcm@openssh.com). In addition, fails to specify that the AES-GCM invocation counter
is incremented mod 264. CNSA implementations ensure the counter never repeats and is
properly incremented after processing a binary packet:

invocation_counter = invocation_counter + 1 mod 264.

The purpose of this document is to draw upon all of these documents to provide guidance for
CNSA-compliant implementations of Secure Shell. Algorithms specified in this document may be
different from mandatory-to-implement algorithms; where this occurs, the latter will be present
but not used. Note that, while compliant Secure Shell implementations follow the guidance
in this document, that requirement does not in and of itself imply that a given implementation of
Secure Shell is suitable for use national security systems. An implementation must be validated
by the appropriate authority before such usage is permitted.

• [RFC5656]
• [RFC8268]
• [RFC8268]

• [RFC5656]
• [RFC8332]

• [RFC5647]

• [RFC5647]

[FIPS180]

[RFC8268] [RFC8332]
SHOULD MAY

MUST NOT

[SP800-38D]
MUST

[RFC5647]

[RFC5647]
MUST

MUST

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 4

5. Security Mechanism Negotiation and Initialization
As described in , the exchange of SSH_MSG_KEXINIT between the server
and the client establishes which key agreement algorithm, MAC algorithm, host key algorithm
(server authentication algorithm), and encryption algorithm are to be used. This section specifies
the use of CNSA components in the Secure Shell algorithm negotiation, key agreement, server
authentication, and user authentication.

The choice of all but the user authentication methods is determined by the exchange of
SSH_MSG_KEXINIT between the client and the server.

The kex_algorithms name-list is used to negotiate a single key agreement algorithm between the
server and client in accordance with the guidance given in Section 4. While establishes
general guidance on the capabilities of SSH implementations and requires support for "diffie-
hellman-group14-sha256", it be used. The result be one of the following
kex_algorithms, or the connection be terminated:

ecdh-sha2-nistp384
diffie-hellman-group15-sha512
diffie-hellman-group16-sha512

One of the following sets be used for the encryption_algorithms and mac_algorithms name-
lists. Either set be used for each direction (i.e., client_to_server or server_to_client), but the
result must be the same (i.e., use of AEAD_AES_256_GCM).

encryption_algorithm_name_list := { AEAD_AES_256_GCM }

mac_algorithm_name_list := { AEAD_AES_256_GCM }

or

encryption_algorithm_name_list := { aes256-gcm@openssh.com }

mac_algorithm_name_list := {}

One of the following public key algorithms be used:

rsa-sha2-512
ecdsa-sha2-nistp384

The procedures for applying the negotiated algorithms are given in the following sections.

Section 7.1 of [RFC4253]

[RFC9142]

MUST NOT MUST
MUST

• [RFC5656]
• [RFC8268]
• [RFC8268]

MUST
MAY

MUST

• [RFC8332]
• [RFC5656]

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 5

https://www.rfc-editor.org/rfc/rfc4253#section-7.1

6. Key Exchange
The key exchange to be used is determined by the name-lists exchanged in the SSH_MSG_KEXINIT
packets, as described above. Either Elliptic Curve Diffie-Hellman (ECDH) or Diffie-Hellman (DH)

 be used to establish a shared secret value between the client and the server.

A compliant system allow the reuse of ephemeral/exchange values in a key exchange
algorithm due to security concerns related to this practice. Section 5.6.3.3 of states that
an ephemeral private key shall be used in exactly one key establishment transaction and shall be
destroyed (zeroized) as soon as possible. Section 5.8 of states that such shared secrets
shall be destroyed (zeroized) immediately after its use. CNSA-compliant systems follow
these mandates.

MUST

MUST NOT
[SP80056A]

[SP80056A]
MUST

6.1. ECDH Key Exchange
The key exchange begins with the SSH_MSG_KEXECDH_INIT message that contains the client's
ephemeral public key used to generate a shared secret value.

The server responds to an SSH_MSG_KEXECDH_INIT message with an
SSH_MSG_KEXECDH_REPLY message that contains the server's ephemeral public key, the server's
public host key, and a signature of the exchange hash value formed from the newly established
shared secret value. The kex algorithm be ecdh-sha2-nistp384, and the public key algorithm

 be either ecdsa-sha2-nistp384 or rsa-sha2-512.
MUST

MUST

6.2. DH Key Exchange
The key exchange begins with the SSH_MSG_KEXDH_INIT message that contains the client's DH
exchange value used to generate a shared secret value.

The server responds to an SSH_MSG_KEXDH_INIT message with an SSH_MSG_KEXDH_REPLY
message that contains the server's DH exchange value, the server's public host key, and a
signature of the exchange hash value formed from the newly established shared secret value. The
kex algorithm be one of diffie-hellman-group15-sha512 or diffie-hellman-group16-sha512,
and the public key algorithm be either ecdsa-sha2-nistp384 or rsa-sha2-512.

MUST
MUST

7. Authentication

7.1. Server Authentication
A signature on the exchange hash value derived from the newly established shared secret value is
used to authenticate the server to the client. Servers be authenticated using digital
signatures. The public key algorithm implemented be ecdsa-sha2-nistp384 or rsa-sha2-512.
The RSA public key modulus be 3072 or 4096 bits in size; clients accept RSA
signatures from a public key modulus of any other size.

MUST
MUST

MUST MUST NOT

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 6

The following public key algorithms be used:

ecdsa-sha2-nistp384
rsa-sha2-512

The client verify that the presented key is a valid authenticator for the server before
verifying the server signature. If possible, validation be done using certificates.
Otherwise, the client validate the presented public key through some other secure, possibly
off-line mechanism. Implementations employ a "Trust on First Use (TOFU)" security
model where a client accepts the first public host key presented to it from a not-yet-verified
server. Use of a TOFU model would allow an intermediate adversary to present itself to the client
as the server.

Where X.509 v3 Certificates are used, their use comply with .

MUST

• [RFC5656]
• [RFC8332]

MUST
SHOULD

MUST
MUST NOT

MUST [RFC8603]

7.2. User Authentication
The Secure Shell Transport Layer Protocol authenticates the server to the host but does not
authenticate the user (or the user's host) to the server. All users be authenticated,
follow , and be authenticated using a public key method. Users
authenticate using passwords. Other methods of authentication not be used, including
"none".

When authenticating with public key, the following public key algorithms be used:

ecdsa-sha2-nistp384
rsa-sha2-512

The server verify that the public key is a valid authenticator for the user. If possible,
validation be done using certificates. Otherwise, the server must validate the public key
through another secure, possibly off-line mechanism.

Where X.509 v3 Certificates are used, their use comply with .

If authenticating with RSA, the client's public key modulus be 3072 or 4096 bits in size, and
the server accept signatures from an RSA public key modulus of any other size.

To facilitate client authentication with RSA using SHA-512, clients and servers implement
the server-sig-algs extension, as specified in . In that case, in the SSH_MSG_KEXINIT, the
client include the indicator ext-info-c to the kex_algorithms field, and the server
respond with an SSH_MSG_EXT_INFO message containing the server-sig-algs extension. The
server list only ecdsa-sha2-nistp384 and/or rsa-sha2-512 as the acceptable public key
algorithms in this response.

If authenticating by passwords, it is essential that passwords have sufficient entropy to protect
against dictionary attacks. During authentication, the password be protected in the
established encrypted communications channel. Additional guidelines are provided in .

MUST MUST
[RFC4252] SHOULD MAY

MUST

MUST

• [RFC5656]
• [RFC8332]

MUST
SHOULD

MUST [RFC8603]

MUST
MUST NOT

SHOULD
[RFC8308]

SHALL SHOULD

MUST

MUST
[SP80063]

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 7

8. Confidentiality and Data Integrity of SSH Binary Packets
Secure Shell transfers data between the client and the server using its own binary packet
structure. The SSH binary packet structure is independent of any packet structure on the
underlying data channel. The contents of each binary packet and portions of the header are
encrypted, and each packet is authenticated with its own message authentication code. Use of
AES-GCM will both encrypt the packet and form a 16-octet authentication tag to ensure data
integrity.

8.1. Galois/Counter Mode
Use of AES-GCM in Secure Shell is described in . CNSA-complaint SSH implementations

 support AES-GCM (negotiated as AEAD_AES_GCM_256 or aes256-gcm@openssh; see Section
5) to provide confidentiality and ensure data integrity. No other confidentiality or data integrity
algorithms are permitted.

The AES-GCM invocation counter is incremented mod 264. That is, after processing a binary
packet:

invocation_counter = invocation_counter + 1 mod 264

The invocation counter repeat a counter value.

[RFC5647]
MUST

MUST NOT

8.2. Data Integrity
As specified in , all 16 octets of the authentication tag be used as the SSH data
integrity value of the SSH binary packet.

[RFC5647] MUST

9. Rekeying
 allows either the server or the client to initiate a "key re-exchange ... by

sending an SSH_MSG_KEXINIT packet" and to "change some or all of the [cipher] algorithms
during the re-exchange". This specification requires the same cipher suite to be employed when
rekeying; that is, the cipher algorithms be changed when a rekey occurs.

Section 9 of [RFC4253]

MUST NOT

10. Security Considerations
The security considerations of , , , , and apply.[RFC4251] [RFC4252] [RFC4253] [RFC5647] [RFC5656]

11. IANA Considerations
This document has no IANA actions.

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 8

https://www.rfc-editor.org/rfc/rfc4253#section-9

[CNSA]

[FIPS180]

[RFC2119]

[RFC4251]

[RFC4252]

[RFC4253]

[RFC5647]

[RFC5656]

[RFC8174]

[RFC8268]

[RFC8308]

12. References

12.1. Normative References

,
, , October 2016,

.

, ,
, , August 2015,

.

, , ,
, , March 1997,
.

 and , ,
, , January 2006,

.

 and , ,
, , January 2006,
.

 and , ,
, , January 2006,
.

 and ,
, , , August 2009,

.

 and ,
, , , December 2009,

.

, , ,
, , May 2017,
.

,
, , ,

December 2017, .

, , ,
, March 2018, .

Committee for National Security Systems "Use of Public Standards for Secure
Information Sharing" CNSSP 15 <https://www.cnss.gov/CNSS/
Issuances/Policies.cfm>

National Institute of Standards and Technology "Secure Hash Standard (SHS)"
FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.180-4 <https://doi.org/10.6028/
NIST.FIPS.180-4>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Protocol Architecture" RFC
4251 DOI 10.17487/RFC4251 <https://www.rfc-editor.org/info/
rfc4251>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Authentication Protocol"
RFC 4252 DOI 10.17487/RFC4252 <https://www.rfc-editor.org/info/
rfc4252>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Transport Layer Protocol"
RFC 4253 DOI 10.17487/RFC4253 <https://www.rfc-editor.org/info/
rfc4253>

Igoe, K. J. Solinas "AES Galois Counter Mode for the Secure Shell Transport
Layer Protocol" RFC 5647 DOI 10.17487/RFC5647 <https://www.rfc-
editor.org/info/rfc5647>

Stebila, D. J. Green "Elliptic Curve Algorithm Integration in the Secure Shell
Transport Layer" RFC 5656 DOI 10.17487/RFC5656 <https://
www.rfc-editor.org/info/rfc5656>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Baushke, M. "More Modular Exponentiation (MODP) Diffie-Hellman (DH) Key
Exchange (KEX) Groups for Secure Shell (SSH)" RFC 8268 DOI 10.17487/RFC8268

<https://www.rfc-editor.org/info/rfc8268>

Bider, D. "Extension Negotiation in the Secure Shell (SSH) Protocol" RFC 8308
DOI 10.17487/RFC8308 <https://www.rfc-editor.org/info/rfc8308>

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 9

https://www.cnss.gov/CNSS/Issuances/Policies.cfm
https://www.cnss.gov/CNSS/Issuances/Policies.cfm
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4251
https://www.rfc-editor.org/info/rfc4251
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc5647
https://www.rfc-editor.org/info/rfc5647
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8268
https://www.rfc-editor.org/info/rfc8308

[RFC8332]

[RFC8603]

[RFC9142]

[SP800-38D]

[SP80056A]

[SP80059]

[SP80063]

,
, , , March 2018,

.

 and ,
, ,

, May 2019, .

12.2. Informative References

,
, , , January 2022,

.

,
,

, , November 2007,
.

,
,

, , , April
2018, .

,
,

, , August 2003,
.

, ,
, , June 2017,

.

Bider, D. "Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell (SSH)
Protocol" RFC 8332 DOI 10.17487/RFC8332 <https://www.rfc-
editor.org/info/rfc8332>

Jenkins, M. L. Zieglar "Commercial National Security Algorithm (CNSA) Suite
Certificate and Certificate Revocation List (CRL) Profile" RFC 8603 DOI 10.17487/
RFC8603 <https://www.rfc-editor.org/info/rfc8603>

Baushke, M. "Key Exchange (KEX) Method Updates and Recommendations for
Secure Shell (SSH)" RFC 9142 DOI 10.17487/RFC9142 <https://
www.rfc-editor.org/info/rfc9142>

National Institute of Standards and Technology "Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC" NIST
Special Publication 800-38D DOI 10.6028/NIST.SP.800-38D
<https://doi.org/10.6028/NIST.SP.800-38D>

National Institute of Standards and Technology "Recommendation for Pair-
Wise Key Establishment Schemes Using Discrete Logarithm Cryptography"
Revision 3 NIST Special Publication 800-56A DOI 10.6028/NIST.SP.800-56Ar3

<https://doi.org/10.6028/NIST.SP.800-56Ar3>

National Institute of Standards and Technology "Guideline for Identifying an
Information System as a National Security System" NIST Special Publication
800-59 DOI 10.6028/NIST.SP.800-59 <https://doi.org/10.6028/NIST.SP.
800-59>

National Institute of Standards and Technology "Digital Identity Guidelines"
NIST Special Publication 800-63-3 DOI 10.6028/NIST.SP.800-63-3 <https://
doi.org/10.6028/NIST.SP.800-63-3>

Authors' Addresses
Nicholas Gajcowski
National Security Agency

 nhgajco@uwe.nsa.gov Email:

Michael Jenkins
National Security Agency

 mjjenki@cyber.nsa.gov Email:

RFC 9212 CNSA Suite SSH Profile March 2022

Gajcowski & Jenkins Informational Page 10

https://www.rfc-editor.org/info/rfc8332
https://www.rfc-editor.org/info/rfc8332
https://www.rfc-editor.org/info/rfc8603
https://www.rfc-editor.org/info/rfc9142
https://www.rfc-editor.org/info/rfc9142
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-59
https://doi.org/10.6028/NIST.SP.800-59
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-63-3
mailto:nhgajco@uwe.nsa.gov
mailto:mjjenki@cyber.nsa.gov

	RFC 9212
	Commercial National Security Algorithm (CNSA) Suite Cryptography for Secure Shell (SSH)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. The Commercial National Security Algorithm Suite
	4. CNSA and Secure Shell
	5. Security Mechanism Negotiation and Initialization
	6. Key Exchange
	6.1. ECDH Key Exchange
	6.2. DH Key Exchange

	7. Authentication
	7.1. Server Authentication
	7.2. User Authentication

	8. Confidentiality and Data Integrity of SSH Binary Packets
	8.1. Galois/Counter Mode
	8.2. Data Integrity

	9. Rekeying
	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Authors' Addresses

 Commercial National Security Algorithm (CNSA) Suite Cryptography for Secure Shell (SSH)

 National Security Agency

 nhgajco@uwe.nsa.gov

 National Security Agency

 mjjenki@cyber.nsa.gov

 NSS
 remote administration

 The United States Government has published the National Security
 Agency (NSA) Commercial National Security Algorithm (CNSA) Suite, which
 defines cryptographic algorithm policy for national security
 applications. This document specifies the conventions for using the
 United States National Security Agency's CNSA Suite algorithms with the
 Secure Shell Transport Layer Protocol and the Secure Shell
 Authentication Protocol. It applies to the capabilities, configuration,
 and operation of all components of US National Security Systems
 (described in NIST Special Publication 800-59) that employ Secure Shell
 (SSH). This document is also appropriate for all other US Government
 systems that process high-value information. It is made publicly
 available for use by developers and operators of these and any other
 system deployments.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any
 other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for
 publication by the RFC Editor are not candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Terminology

 . The Commercial National Security Algorithm Suite

 . CNSA and Secure Shell

 . Security Mechanism Negotiation and Initialization

 . Key Exchange

 . ECDH Key Exchange

 . DH Key Exchange

 . Authentication

 . Server Authentication

 . User Authentication

 . Confidentiality and Data Integrity of SSH Binary Packets

 . Galois/Counter Mode

 . Data Integrity

 . Rekeying

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Authors' Addresses

 Introduction
 This document specifies conventions for using the United States
 National Security Agency's CNSA Suite algorithms with the Secure Shell Transport Layer Protocol and the Secure Shell Authentication
 Protocol . It applies to the
 capabilities, configuration, and operation of all components of US
 National Security Systems (described in NIST Special Publication 800-59
) that employ SSH. This
 document is also appropriate for all other US Government systems that
 process high-value information. It is made publicly available for use by
 developers and operators of these and any other system deployments.

 Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 The Commercial National Security Algorithm Suite
 The NSA profiles commercial cryptographic algorithms and
 protocols as part of its mission to support secure, interoperable communications for US
 Government National Security Systems. To this end, it publishes guidance both to assist
 with the US Government's transition to new algorithms and to provide vendors -- and the
 Internet community in general -- with information concerning their proper use and
 configuration.
 Recently, cryptographic transition plans have become overshadowed by the prospect of the
 development of a cryptographically relevant quantum computer. The NSA has established the
 Commercial National Security Algorithm (CNSA) Suite to provide vendors and IT users
 near-term flexibility in meeting their information assurance interoperability requirements
 using current cryptography. The purpose behind this flexibility is to avoid vendors and
 customers making two major transitions (i.e., to elliptic curve cryptography and then to
 post-quantum cryptography) in a relatively short timeframe, as we anticipate a need to
 shift to quantum-resistant cryptography in the near future.
 The NSA is authoring a set of RFCs, including this one, to provide updated guidance
 concerning the use of certain commonly available commercial algorithms in IETF protocols.
 These RFCs can be used in conjunction with other RFCs and cryptographic guidance (e.g.,
 NIST Special Publications) to properly protect Internet traffic and data-at-rest for US
 Government National Security Systems.

 CNSA and Secure Shell
 Several RFCs have documented how each of the CNSA components are to be integrated into Secure Shell (SSH):

 kex algorithms:

 ecdh-sha2-nistp384
 diffie-hellman-group15-sha512
 diffie-hellman-group16-sha512

 public key algorithms:

 ecdsa-sha2-nistp384
 rsa-sha2-512

 encryption algorithms (both client_to_server and server_to_client):

 AEAD_AES_256_GCM

 message authentication code (MAC) algorithms (both client_to_server and server_to_client):

 AEAD_AES_256_GCM

 While the approved CNSA hash function for all purposes is SHA-384, as defined in , commercial products are more likely to incorporate the kex algorithms and public key algorithms based on SHA-512 (sha2-512), which are defined in and . Therefore, the SHA-384-based kex and public key algorithms SHOULD be used; SHA-512-based algorithms MAY be used. Any hash algorithm other than SHA-384 or SHA-512 MUST NOT be used.

 Use of the Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) shall meet the requirements set forth in , with the additional requirements that all 16 octets of the authentication tag MUST be used as the SSH data integrity value and that AES is used with a 256-bit key. Use of AES-GCM in SSH should be done as described in , with the exception that AES-GCM need not be listed as the MAC algorithm when its use is implicit (such as done in aes256-gcm@openssh.com). In addition, fails to specify that the AES-GCM invocation counter is incremented mod 2 64. CNSA implementations MUST ensure the counter never repeats and is properly incremented after processing a binary packet:
 invocation_counter = invocation_counter + 1 mod 2 64.
 The purpose of this document is to draw upon all of these documents to provide guidance for CNSA-compliant implementations of Secure Shell. Algorithms specified in this document may be different from mandatory-to-implement algorithms; where this occurs, the latter will be present but not used. Note that, while compliant Secure Shell implementations MUST follow the guidance in this document, that requirement does not in and of itself imply that a given implementation of Secure Shell is suitable for use national security systems. An implementation must be validated by the appropriate authority before such usage is permitted.

 Security Mechanism Negotiation and Initialization
 As described in , the exchange of SSH_MSG_KEXINIT between the server and the client establishes which key agreement algorithm, MAC algorithm, host key algorithm (server authentication algorithm), and encryption algorithm are to be used. This section specifies the use of CNSA components in the Secure Shell algorithm negotiation, key agreement, server authentication, and user authentication.

 The choice of all but the user authentication methods is determined by the exchange of SSH_MSG_KEXINIT between the client and the server.

 The kex_algorithms name-list is used to negotiate a single key agreement algorithm between the server and client in accordance with the guidance given in . While establishes general guidance on the capabilities of SSH implementations and requires support for "diffie-hellman-group14-sha256", it MUST NOT be used. The result MUST be one of the following kex_algorithms, or the connection MUST be terminated:

 ecdh-sha2-nistp384
 diffie-hellman-group15-sha512
 diffie-hellman-group16-sha512

 One of the following sets MUST be used for the encryption_algorithms and mac_algorithms name-lists. Either set MAY be used for each direction (i.e., client_to_server or server_to_client), but the result must be the same (i.e., use of AEAD_AES_256_GCM).
 encryption_algorithm_name_list := { AEAD_AES_256_GCM }
 mac_algorithm_name_list := { AEAD_AES_256_GCM }
 or
 encryption_algorithm_name_list := { aes256-gcm@openssh.com }
 mac_algorithm_name_list := {}
 One of the following public key algorithms MUST be used:

 rsa-sha2-512
 ecdsa-sha2-nistp384

 The procedures for applying the negotiated algorithms are given in the following sections.

 Key Exchange
 The key exchange to be used is determined by the name-lists exchanged in the SSH_MSG_KEXINIT packets, as described above. Either Elliptic Curve Diffie-Hellman (ECDH) or Diffie-Hellman (DH) MUST be used to establish a shared secret value between the client and the server.

 A compliant system MUST NOT allow the reuse of ephemeral/exchange values in a key exchange algorithm due to security concerns related to this practice.
Section 5.6.3.3 of states that an ephemeral private key shall be used in exactly one key establishment transaction and shall be destroyed (zeroized) as soon as possible. Section 5.8 of states that such shared secrets shall be destroyed (zeroized) immediately after its use. CNSA-compliant systems MUST follow these mandates.

 ECDH Key Exchange
 The key exchange begins with the SSH_MSG_KEXECDH_INIT message that contains the client's ephemeral public key used to generate a shared secret value.

 The server responds to an SSH_MSG_KEXECDH_INIT message with an SSH_MSG_KEXECDH_REPLY message that contains the server's ephemeral public key, the server's public host key, and a signature of the exchange hash value formed from the newly established shared secret value. The kex algorithm MUST be ecdh-sha2-nistp384, and the public key algorithm MUST be either ecdsa-sha2-nistp384 or rsa-sha2-512.

 DH Key Exchange
 The key exchange begins with the SSH_MSG_KEXDH_INIT message that contains the client's DH exchange value used to generate a shared secret value.

 The server responds to an SSH_MSG_KEXDH_INIT message with an SSH_MSG_KEXDH_REPLY message that contains the server's DH exchange value, the server's public host key, and a signature of the exchange hash value formed from the newly established shared secret value. The kex algorithm MUST be one of diffie-hellman-group15-sha512 or diffie-hellman-group16-sha512, and the public key algorithm MUST be either ecdsa-sha2-nistp384 or rsa-sha2-512.

 Authentication

 Server Authentication
 A signature on the exchange hash value derived from the newly established shared secret value is used to authenticate the server to the client. Servers MUST be authenticated using digital signatures. The public key algorithm implemented MUST be ecdsa-sha2-nistp384 or rsa-sha2-512. The RSA public key modulus MUST be 3072 or 4096 bits in size; clients MUST NOT accept RSA signatures from a public key modulus of any other size.

 The following public key algorithms MUST be used:

 ecdsa-sha2-nistp384
 rsa-sha2-512

 The client MUST verify that the presented key is a valid authenticator for the server before verifying the server signature. If possible, validation SHOULD be done using certificates. Otherwise, the client MUST validate the presented public key through some other secure, possibly off-line mechanism. Implementations MUST NOT employ a "Trust on First Use (TOFU)" security model where a client accepts the first public host key presented to it from a not-yet-verified server. Use of a TOFU model would allow an intermediate adversary to present itself to the client as the server.

 Where X.509 v3 Certificates are used, their use MUST comply with .

 User Authentication
 The Secure Shell Transport Layer Protocol authenticates the server to the host but does not authenticate the user (or the user's host) to the server. All users MUST be authenticated, MUST follow , and SHOULD be authenticated using a public key method. Users MAY authenticate using passwords. Other methods of authentication MUST not be used, including "none".

 When authenticating with public key, the following public key algorithms MUST be used:

 ecdsa-sha2-nistp384
 rsa-sha2-512

 The server MUST verify that the public key is a valid authenticator for the user. If possible, validation SHOULD be done using certificates. Otherwise, the server must validate the public key through another secure, possibly off-line mechanism.

 Where X.509 v3 Certificates are used, their use MUST comply with .

 If authenticating with RSA, the client's public key modulus MUST be 3072 or 4096 bits in size, and the server MUST NOT accept signatures from an RSA public key modulus of any other size.

 To facilitate client authentication with RSA using SHA-512, clients and servers SHOULD implement the server-sig-algs extension, as specified in . In that case, in the SSH_MSG_KEXINIT, the client SHALL include the indicator ext-info-c to the kex_algorithms field, and the server SHOULD respond with an SSH_MSG_EXT_INFO message containing the server-sig-algs extension. The server MUST list only ecdsa-sha2-nistp384 and/or rsa-sha2-512 as the acceptable public key algorithms in this response.

 If authenticating by passwords, it is essential that passwords have sufficient entropy to protect against dictionary attacks. During authentication, the password MUST be protected in the established encrypted communications channel. Additional guidelines are provided in .

 Confidentiality and Data Integrity of SSH Binary Packets
 Secure Shell transfers data between the client and the server using its own binary packet structure. The SSH binary packet structure is independent of any packet structure on the underlying data channel. The contents of each binary packet and portions of the header are encrypted, and each packet is authenticated with its own message authentication code. Use of AES-GCM will both encrypt the packet and form a 16-octet authentication tag to ensure data integrity.

 Galois/Counter Mode
 Use of AES-GCM in Secure Shell is described in . CNSA-complaint SSH implementations MUST support AES-GCM (negotiated as AEAD_AES_GCM_256 or aes256-gcm@openssh; see) to provide confidentiality and ensure data integrity. No other confidentiality or data integrity algorithms are permitted.

 The AES-GCM invocation counter is incremented mod 2 64. That is, after processing a binary packet:
 invocation_counter = invocation_counter + 1 mod 2 64
 The invocation counter MUST NOT repeat a counter value.

 Data Integrity
 As specified in , all 16 octets of the
	authentication tag MUST be used as the SSH data integrity value of the SSH
	binary packet.

 Rekeying
 allows either the server or the client to initiate a "key re-exchange ... by sending an SSH_MSG_KEXINIT packet" and to "change some or all of the [cipher] algorithms during the re-exchange". This specification requires the same cipher suite to be employed when rekeying; that is, the cipher algorithms MUST NOT be changed when a rekey occurs.

 Security Considerations
 The security considerations of , , , , and
 apply.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Use of Public Standards for Secure Information Sharing

 Committee for National Security Systems

 Secure Hash Standard (SHS)

 National Institute of Standards and Technology

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Secure Shell (SSH) Protocol Architecture

 The Secure Shell (SSH) Protocol is a protocol for secure remote login and other secure network services over an insecure network. This document describes the architecture of the SSH protocol, as well as the notation and terminology used in SSH protocol documents. It also discusses the SSH algorithm naming system that allows local extensions. The SSH protocol consists of three major components: The Transport Layer Protocol provides server authentication, confidentiality, and integrity with perfect forward secrecy. The User Authentication Protocol authenticates the client to the server. The Connection Protocol multiplexes the encrypted tunnel into several logical channels. Details of these protocols are described in separate documents. [STANDARDS-TRACK]

 The Secure Shell (SSH) Authentication Protocol

 The Secure Shell Protocol (SSH) is a protocol for secure remote login and other secure network services over an insecure network. This document describes the SSH authentication protocol framework and public key, password, and host-based client authentication methods. Additional authentication methods are described in separate documents. The SSH authentication protocol runs on top of the SSH transport layer protocol and provides a single authenticated tunnel for the SSH connection protocol. [STANDARDS-TRACK]

 The Secure Shell (SSH) Transport Layer Protocol

 The Secure Shell (SSH) is a protocol for secure remote login and other secure network services over an insecure network.
 This document describes the SSH transport layer protocol, which typically runs on top of TCP/IP. The protocol can be used as a basis for a number of secure network services. It provides strong encryption, server authentication, and integrity protection. It may also provide compression.
 Key exchange method, public key algorithm, symmetric encryption algorithm, message authentication algorithm, and hash algorithm are all negotiated.
 This document also describes the Diffie-Hellman key exchange method and the minimal set of algorithms that are needed to implement the SSH transport layer protocol. [STANDARDS-TRACK]

 AES Galois Counter Mode for the Secure Shell Transport Layer Protocol

 Secure shell (SSH) is a secure remote-login protocol. SSH provides for algorithms that provide authentication, key agreement, confidentiality, and data-integrity services. The purpose of this document is to show how the AES Galois Counter Mode can be used to provide both confidentiality and data integrity to the SSH Transport Layer Protocol. This memo provides information for the Internet community.

 Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer

 This document describes algorithms based on Elliptic Curve Cryptography (ECC) for use within the Secure Shell (SSH) transport protocol. In particular, it specifies Elliptic Curve Diffie-Hellman (ECDH) key agreement, Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key agreement, and Elliptic Curve Digital Signature Algorithm (ECDSA) for use in the SSH Transport Layer protocol. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 More Modular Exponentiation (MODP) Diffie-Hellman (DH) Key Exchange (KEX) Groups for Secure Shell (SSH)

 This document defines added Modular Exponentiation (MODP) groups for the Secure Shell (SSH) protocol using SHA-2 hashes. This document updates RFC 4250. This document updates RFC 4253 by correcting an error regarding checking the Peer's DH Public Key.

 Extension Negotiation in the Secure Shell (SSH) Protocol

 This memo updates RFCs 4251, 4252, 4253, and 4254 by defining a mechanism for Secure Shell (SSH) clients and servers to exchange information about supported protocol extensions confidentially after SSH key exchange.

 Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol

 This memo updates RFCs 4252 and 4253 to define new public key algorithms for use of RSA keys with SHA-256 and SHA-512 for server and client authentication in SSH connections.

 Commercial National Security Algorithm (CNSA) Suite Certificate and Certificate Revocation List (CRL) Profile

 This document specifies a base profile for X.509 v3 Certificates and X.509 v2 Certificate Revocation Lists (CRLs) for use with the United States National Security Agency's Commercial National Security Algorithm (CNSA) Suite. The profile applies to the capabilities, configuration, and operation of all components of US National Security Systems that employ such X.509 certificates. US National Security Systems are described in NIST Special Publication 800-59. It is also appropriate for all other US Government systems that process high-value information. It is made publicly available for use by developers and operators of these and any other system deployments.

 Informative References

 Key Exchange (KEX) Method Updates and Recommendations for Secure Shell (SSH)

 This document updates the recommended set of key exchange methods for use in the Secure Shell (SSH) protocol to meet evolving needs for stronger security. It updates RFCs 4250, 4253, 4432, and 4462.

 Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC

 National Institute of Standards and Technology

 Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

 National Institute of Standards and Technology

 Revision 3

 Guideline for Identifying an Information System as a National Security System

 National Institute of Standards and Technology

 Digital Identity Guidelines

 National Institute of Standards and Technology

 Authors' Addresses

 National Security Agency

 nhgajco@uwe.nsa.gov

 National Security Agency

 mjjenki@cyber.nsa.gov

