
Network Working Group                                    C. Kaufman, Ed.
Request for Comments: 4306                                     Microsoft
Obsoletes: 2407, 2408, 2409                                December 2005
Category: Standards Track

                 Internet Key Exchange (IKEv2) Protocol

Status of This Memo

   This document specifies an Internet standards track protocol for the
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   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice
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Abstract

   This document describes version 2 of the Internet Key Exchange (IKE)
   protocol.  IKE is a component of IPsec used for performing mutual
   authentication and establishing and maintaining security associations
   (SAs).

   This version of the IKE specification combines the contents of what
   were previously separate documents, including Internet Security
   Association and Key Management Protocol (ISAKMP, RFC 2408), IKE (RFC
   2409), the Internet Domain of Interpretation (DOI, RFC 2407), Network
   Address Translation (NAT) Traversal, Legacy authentication, and
   remote address acquisition.

   Version 2 of IKE does not interoperate with version 1, but it has
   enough of the header format in common that both versions can
   unambiguously run over the same UDP port.
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1.  Introduction

   IP Security (IPsec) provides confidentiality, data integrity, access
   control, and data source authentication to IP datagrams.  These
   services are provided by maintaining shared state between the source
   and the sink of an IP datagram.  This state defines, among other
   things, the specific services provided to the datagram, which
   cryptographic algorithms will be used to provide the services, and
   the keys used as input to the cryptographic algorithms.

   Establishing this shared state in a manual fashion does not scale
   well.  Therefore, a protocol to establish this state dynamically is
   needed.  This memo describes such a protocol -- the Internet Key
   Exchange (IKE).  This is version 2 of IKE.  Version 1 of IKE was
   defined in RFCs 2407, 2408, and 2409 [Pip98, MSST98, HC98].  This
   single document is intended to replace all three of those RFCs.

   Definitions of the primitive terms in this document (such as Security
   Association or SA) can be found in [RFC4301].

   Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and
   "MAY" that appear in this document are to be interpreted as described
   in [Bra97].

   The term "Expert Review" is to be interpreted as defined in
   [RFC2434].

   IKE performs mutual authentication between two parties and
   establishes an IKE security association (SA) that includes shared
   secret information that can be used to efficiently establish SAs for
   Encapsulating Security Payload (ESP) [RFC4303] and/or Authentication
   Header (AH) [RFC4302] and a set of cryptographic algorithms to be
   used by the SAs to protect the traffic that they carry.  In this
   document, the term "suite" or "cryptographic suite" refers to a
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   complete set of algorithms used to protect an SA.  An initiator
   proposes one or more suites by listing supported algorithms that can
   be combined into suites in a mix-and-match fashion.  IKE can also
   negotiate use of IP Compression (IPComp) [IPCOMP] in connection with
   an ESP and/or AH SA.  We call the IKE SA an "IKE_SA".  The SAs for
   ESP and/or AH that get set up through that IKE_SA we call
   "CHILD_SAs".

   All IKE communications consist of pairs of messages: a request and a
   response.  The pair is called an "exchange".  We call the first
   messages establishing an IKE_SA IKE_SA_INIT and IKE_AUTH exchanges
   and subsequent IKE exchanges CREATE_CHILD_SA or INFORMATIONAL
   exchanges.  In the common case, there is a single IKE_SA_INIT
   exchange and a single IKE_AUTH exchange (a total of four messages) to
   establish the IKE_SA and the first CHILD_SA.  In exceptional cases,
   there may be more than one of each of these exchanges.  In all cases,
   all IKE_SA_INIT exchanges MUST complete before any other exchange
   type, then all IKE_AUTH exchanges MUST complete, and following that
   any number of CREATE_CHILD_SA and INFORMATIONAL exchanges may occur
   in any order.  In some scenarios, only a single CHILD_SA is needed
   between the IPsec endpoints, and therefore there would be no
   additional exchanges.  Subsequent exchanges MAY be used to establish
   additional CHILD_SAs between the same authenticated pair of endpoints
   and to perform housekeeping functions.

   IKE message flow always consists of a request followed by a response.
   It is the responsibility of the requester to ensure reliability.  If
   the response is not received within a timeout interval, the requester
   needs to retransmit the request (or abandon the connection).

   The first request/response of an IKE session (IKE_SA_INIT) negotiates
   security parameters for the IKE_SA, sends nonces, and sends Diffie-
   Hellman values.

   The second request/response (IKE_AUTH) transmits identities, proves
   knowledge of the secrets corresponding to the two identities, and
   sets up an SA for the first (and often only) AH and/or ESP CHILD_SA.

   The types of subsequent exchanges are CREATE_CHILD_SA (which creates
   a CHILD_SA) and INFORMATIONAL (which deletes an SA, reports error
   conditions, or does other housekeeping).  Every request requires a
   response.  An INFORMATIONAL request with no payloads (other than the
   empty Encrypted payload required by the syntax) is commonly used as a
   check for liveness.  These subsequent exchanges cannot be used until
   the initial exchanges have completed.
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   In the description that follows, we assume that no errors occur.
   Modifications to the flow should errors occur are described in
   section 2.21.

1.1.  Usage Scenarios

   IKE is expected to be used to negotiate ESP and/or AH SAs in a number
   of different scenarios, each with its own special requirements.

1.1.1.  Security Gateway to Security Gateway Tunnel

                    +-+-+-+-+-+            +-+-+-+-+-+
                    !         ! IPsec      !         !
       Protected    !Tunnel   ! tunnel     !Tunnel   !     Protected
       Subnet   <-->!Endpoint !<---------->!Endpoint !<--> Subnet
                    !         !            !         !
                    +-+-+-+-+-+            +-+-+-+-+-+

             Figure 1:  Security Gateway to Security Gateway Tunnel

   In this scenario, neither endpoint of the IP connection implements
   IPsec, but network nodes between them protect traffic for part of the
   way.  Protection is transparent to the endpoints, and depends on
   ordinary routing to send packets through the tunnel endpoints for
   processing.  Each endpoint would announce the set of addresses
   "behind" it, and packets would be sent in tunnel mode where the inner
   IP header would contain the IP addresses of the actual endpoints.

1.1.2.  Endpoint-to-Endpoint Transport

       +-+-+-+-+-+                                          +-+-+-+-+-+
       !         !                 IPsec transport          !         !
       !Protected!                or tunnel mode SA         !Protected!
       !Endpoint !<---------------------------------------->!Endpoint !
       !         !                                          !         !
       +-+-+-+-+-+                                          +-+-+-+-+-+

                       Figure 2:  Endpoint to Endpoint

   In this scenario, both endpoints of the IP connection implement
   IPsec, as required of hosts in [RFC4301].  Transport mode will
   commonly be used with no inner IP header.  If there is an inner IP
   header, the inner addresses will be the same as the outer addresses.
   A single pair of addresses will be negotiated for packets to be
   protected by this SA.  These endpoints MAY implement application
   layer access controls based on the IPsec authenticated identities of
   the participants.  This scenario enables the end-to-end security that
   has been a guiding principle for the Internet since [RFC1958],
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   [RFC2775], and a method of limiting the inherent problems with
   complexity in networks noted by [RFC3439].  Although this scenario
   may not be fully applicable to the IPv4 Internet, it has been
   deployed successfully in specific scenarios within intranets using
   IKEv1.  It should be more broadly enabled during the transition to
   IPv6 and with the adoption of IKEv2.

   It is possible in this scenario that one or both of the protected
   endpoints will be behind a network address translation (NAT) node, in
   which case the tunneled packets will have to be UDP encapsulated so
   that port numbers in the UDP headers can be used to identify
   individual endpoints "behind" the NAT (see section 2.23).

1.1.3.  Endpoint to Security Gateway Tunnel

       +-+-+-+-+-+                          +-+-+-+-+-+
       !         !         IPsec            !         !     Protected
       !Protected!         tunnel           !Tunnel   !     Subnet
       !Endpoint !<------------------------>!Endpoint !<--- and/or
       !         !                          !         !     Internet
       +-+-+-+-+-+                          +-+-+-+-+-+

                 Figure 3:  Endpoint to Security Gateway Tunnel

   In this scenario, a protected endpoint (typically a portable roaming
   computer) connects back to its corporate network through an IPsec-
   protected tunnel.  It might use this tunnel only to access
   information on the corporate network, or it might tunnel all of its
   traffic back through the corporate network in order to take advantage
   of protection provided by a corporate firewall against Internet-based
   attacks.  In either case, the protected endpoint will want an IP
   address associated with the security gateway so that packets returned
   to it will go to the security gateway and be tunneled back.  This IP
   address may be static or may be dynamically allocated by the security
   gateway.  In support of the latter case, IKEv2 includes a mechanism
   for the initiator to request an IP address owned by the security
   gateway for use for the duration of its SA.

   In this scenario, packets will use tunnel mode.  On each packet from
   the protected endpoint, the outer IP header will contain the source
   IP address associated with its current location (i.e., the address
   that will get traffic routed to the endpoint directly), while the
   inner IP header will contain the source IP address assigned by the
   security gateway (i.e., the address that will get traffic routed to
   the security gateway for forwarding to the endpoint).  The outer
   destination address will always be that of the security gateway,
   while the inner destination address will be the ultimate destination
   for the packet.
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   In this scenario, it is possible that the protected endpoint will be
   behind a NAT.  In that case, the IP address as seen by the security
   gateway will not be the same as the IP address sent by the protected
   endpoint, and packets will have to be UDP encapsulated in order to be
   routed properly.

1.1.4.  Other Scenarios

   Other scenarios are possible, as are nested combinations of the
   above.  One notable example combines aspects of 1.1.1 and 1.1.3. A
   subnet may make all external accesses through a remote security
   gateway using an IPsec tunnel, where the addresses on the subnet are
   routed to the security gateway by the rest of the Internet.  An
   example would be someone’s home network being virtually on the
   Internet with static IP addresses even though connectivity is
   provided by an ISP that assigns a single dynamically assigned IP
   address to the user’s security gateway (where the static IP addresses
   and an IPsec relay are provided by a third party located elsewhere).

1.2.  The Initial Exchanges

   Communication using IKE always begins with IKE_SA_INIT and IKE_AUTH
   exchanges (known in IKEv1 as Phase 1).  These initial exchanges
   normally consist of four messages, though in some scenarios that
   number can grow.  All communications using IKE consist of
   request/response pairs.  We’ll describe the base exchange first,
   followed by variations.  The first pair of messages (IKE_SA_INIT)
   negotiate cryptographic algorithms, exchange nonces, and do a
   Diffie-Hellman exchange [DH].

   The second pair of messages (IKE_AUTH) authenticate the previous
   messages, exchange identities and certificates, and establish the
   first CHILD_SA.  Parts of these messages are encrypted and integrity
   protected with keys established through the IKE_SA_INIT exchange, so
   the identities are hidden from eavesdroppers and all fields in all
   the messages are authenticated.

   In the following descriptions, the payloads contained in the message
   are indicated by names as listed below.

   Notation    Payload

   AUTH      Authentication
   CERT      Certificate
   CERTREQ   Certificate Request
   CP        Configuration
   D         Delete
   E         Encrypted
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   EAP       Extensible Authentication
   HDR       IKE Header
   IDi       Identification - Initiator
   IDr       Identification - Responder
   KE        Key Exchange
   Ni, Nr    Nonce
   N         Notify
   SA        Security Association
   TSi       Traffic Selector - Initiator
   TSr       Traffic Selector - Responder
   V         Vendor ID

   The details of the contents of each payload are described in section
   3.  Payloads that may optionally appear will be shown in brackets,
   such as [CERTREQ], indicate that optionally a certificate request
   payload can be included.

   The initial exchanges are as follows:

       Initiator                          Responder
      -----------                        -----------
       HDR, SAi1, KEi, Ni   -->

   HDR contains the Security Parameter Indexes (SPIs), version numbers,
   and flags of various sorts.  The SAi1 payload states the
   cryptographic algorithms the initiator supports for the IKE_SA.  The
   KE payload sends the initiator’s Diffie-Hellman value.  Ni is the
   initiator’s nonce.

                            <--    HDR, SAr1, KEr, Nr, [CERTREQ]

   The responder chooses a cryptographic suite from the initiator’s
   offered choices and expresses that choice in the SAr1 payload,
   completes the Diffie-Hellman exchange with the KEr payload, and sends
   its nonce in the Nr payload.

   At this point in the negotiation, each party can generate SKEYSEED,
   from which all keys are derived for that IKE_SA.  All but the headers
   of all the messages that follow are encrypted and integrity
   protected.  The keys used for the encryption and integrity protection
   are derived from SKEYSEED and are known as SK_e (encryption) and SK_a
   (authentication, a.k.a.  integrity protection).  A separate SK_e and
   SK_a is computed for each direction.  In addition to the keys SK_e
   and SK_a derived from the DH value for protection of the IKE_SA,
   another quantity SK_d is derived and used for derivation of further
   keying material for CHILD_SAs.  The notation SK { ... } indicates
   that these payloads are encrypted and integrity protected using that
   direction’s SK_e and SK_a.
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       HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
                  AUTH, SAi2, TSi, TSr}     -->

   The initiator asserts its identity with the IDi payload, proves
   knowledge of the secret corresponding to IDi and integrity protects
   the contents of the first message using the AUTH payload (see section
   2.15).  It might also send its certificate(s) in CERT payload(s) and
   a list of its trust anchors in CERTREQ payload(s).  If any CERT
   payloads are included, the first certificate provided MUST contain
   the public key used to verify the AUTH field.  The optional payload
   IDr enables the initiator to specify which of the responder’s
   identities it wants to talk to.  This is useful when the machine on
   which the responder is running is hosting multiple identities at the
   same IP address.  The initiator begins negotiation of a CHILD_SA
   using the SAi2 payload.  The final fields (starting with SAi2) are
   described in the description of the CREATE_CHILD_SA exchange.

                                   <--    HDR, SK {IDr, [CERT,] AUTH,
                                                SAr2, TSi, TSr}

   The responder asserts its identity with the IDr payload, optionally
   sends one or more certificates (again with the certificate containing
   the public key used to verify AUTH listed first), authenticates its
   identity and protects the integrity of the second message with the
   AUTH payload, and completes negotiation of a CHILD_SA with the
   additional fields described below in the CREATE_CHILD_SA exchange.

   The recipients of messages 3 and 4 MUST verify that all signatures
   and MACs are computed correctly and that the names in the ID payloads
   correspond to the keys used to generate the AUTH payload.

1.3.  The CREATE_CHILD_SA Exchange

   This exchange consists of a single request/response pair, and was
   referred to as a phase 2 exchange in IKEv1.  It MAY be initiated by
   either end of the IKE_SA after the initial exchanges are completed.

   All messages following the initial exchange are cryptographically
   protected using the cryptographic algorithms and keys negotiated in
   the first two messages of the IKE exchange.  These subsequent
   messages use the syntax of the Encrypted Payload described in section
   3.14.  All subsequent messages included an Encrypted Payload, even if
   they are referred to in the text as "empty".

   Either endpoint may initiate a CREATE_CHILD_SA exchange, so in this
   section the term "initiator" refers to the endpoint initiating this
   exchange.
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   A CHILD_SA is created by sending a CREATE_CHILD_SA request.  The
   CREATE_CHILD_SA request MAY optionally contain a KE payload for an
   additional Diffie-Hellman exchange to enable stronger guarantees of
   forward secrecy for the CHILD_SA.  The keying material for the
   CHILD_SA is a function of SK_d established during the establishment
   of the IKE_SA, the nonces exchanged during the CREATE_CHILD_SA
   exchange, and the Diffie-Hellman value (if KE payloads are included
   in the CREATE_CHILD_SA exchange).

   In the CHILD_SA created as part of the initial exchange, a second KE
   payload and nonce MUST NOT be sent.  The nonces from the initial
   exchange are used in computing the keys for the CHILD_SA.

   The CREATE_CHILD_SA request contains:

       Initiator                                 Responder
      -----------                               -----------
       HDR, SK {[N], SA, Ni, [KEi],
           [TSi, TSr]}             -->

   The initiator sends SA offer(s) in the SA payload, a nonce in the Ni
   payload, optionally a Diffie-Hellman value in the KEi payload, and
   the proposed traffic selectors in the TSi and TSr payloads.  If this
   CREATE_CHILD_SA exchange is rekeying an existing SA other than the
   IKE_SA, the leading N payload of type REKEY_SA MUST identify the SA
   being rekeyed.  If this CREATE_CHILD_SA exchange is not rekeying an
   existing SA, the N payload MUST be omitted.  If the SA offers include
   different Diffie-Hellman groups, KEi MUST be an element of the group
   the initiator expects the responder to accept.  If it guesses wrong,
   the CREATE_CHILD_SA exchange will fail, and it will have to retry
   with a different KEi.

   The message following the header is encrypted and the message
   including the header is integrity protected using the cryptographic
   algorithms negotiated for the IKE_SA.

   The CREATE_CHILD_SA response contains:

                                  <--    HDR, SK {SA, Nr, [KEr],
                                               [TSi, TSr]}

   The responder replies (using the same Message ID to respond) with the
   accepted offer in an SA payload, and a Diffie-Hellman value in the
   KEr payload if KEi was included in the request and the selected
   cryptographic suite includes that group.  If the responder chooses a
   cryptographic suite with a different group, it MUST reject the
   request.  The initiator SHOULD repeat the request, but now with a KEi
   payload from the group the responder selected.
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   The traffic selectors for traffic to be sent on that SA are specified
   in the TS payloads, which may be a subset of what the initiator of
   the CHILD_SA proposed.  Traffic selectors are omitted if this
   CREATE_CHILD_SA request is being used to change the key of the
   IKE_SA.

1.4.  The INFORMATIONAL Exchange

   At various points during the operation of an IKE_SA, peers may desire
   to convey control messages to each other regarding errors or
   notifications of certain events.  To accomplish this, IKE defines an
   INFORMATIONAL exchange.  INFORMATIONAL exchanges MUST ONLY occur
   after the initial exchanges and are cryptographically protected with
   the negotiated keys.

   Control messages that pertain to an IKE_SA MUST be sent under that
   IKE_SA.  Control messages that pertain to CHILD_SAs MUST be sent
   under the protection of the IKE_SA which generated them (or its
   successor if the IKE_SA was replaced for the purpose of rekeying).

   Messages in an INFORMATIONAL exchange contain zero or more
   Notification, Delete, and Configuration payloads.  The Recipient of
   an INFORMATIONAL exchange request MUST send some response (else the
   Sender will assume the message was lost in the network and will
   retransmit it).  That response MAY be a message with no payloads.
   The request message in an INFORMATIONAL exchange MAY also contain no
   payloads.  This is the expected way an endpoint can ask the other
   endpoint to verify that it is alive.

   ESP and AH SAs always exist in pairs, with one SA in each direction.
   When an SA is closed, both members of the pair MUST be closed.  When
   SAs are nested, as when data (and IP headers if in tunnel mode) are
   encapsulated first with IPComp, then with ESP, and finally with AH
   between the same pair of endpoints, all of the SAs MUST be deleted
   together.  Each endpoint MUST close its incoming SAs and allow the
   other endpoint to close the other SA in each pair.  To delete an SA,
   an INFORMATIONAL exchange with one or more delete payloads is sent
   listing the SPIs (as they would be expected in the headers of inbound
   packets) of the SAs to be deleted.  The recipient MUST close the
   designated SAs.  Normally, the reply in the INFORMATIONAL exchange
   will contain delete payloads for the paired SAs going in the other
   direction.  There is one exception.  If by chance both ends of a set
   of SAs independently decide to close them, each may send a delete
   payload and the two requests may cross in the network.  If a node
   receives a delete request for SAs for which it has already issued a
   delete request, it MUST delete the outgoing SAs while processing the
   request and the incoming SAs while processing the response.  In that
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   case, the responses MUST NOT include delete payloads for the deleted
   SAs, since that would result in duplicate deletion and could in
   theory delete the wrong SA.

   A node SHOULD regard half-closed connections as anomalous and audit
   their existence should they persist.  Note that this specification
   nowhere specifies time periods, so it is up to individual endpoints
   to decide how long to wait.  A node MAY refuse to accept incoming
   data on half-closed connections but MUST NOT unilaterally close them
   and reuse the SPIs.  If connection state becomes sufficiently messed
   up, a node MAY close the IKE_SA; doing so will implicitly close all
   SAs negotiated under it.  It can then rebuild the SAs it needs on a
   clean base under a new IKE_SA.

   The INFORMATIONAL exchange is defined as:

       Initiator                        Responder
      -----------                      -----------
       HDR, SK {[N,] [D,] [CP,] ...} -->
                                   <-- HDR, SK {[N,] [D,] [CP], ...}

   The processing of an INFORMATIONAL exchange is determined by its
   component payloads.

1.5.  Informational Messages outside of an IKE_SA

   If an encrypted IKE packet arrives on port 500 or 4500 with an
   unrecognized SPI, it could be because the receiving node has recently
   crashed and lost state or because of some other system malfunction or
   attack.  If the receiving node has an active IKE_SA to the IP address
   from whence the packet came, it MAY send a notification of the
   wayward packet over that IKE_SA in an INFORMATIONAL exchange.  If it
   does not have such an IKE_SA, it MAY send an Informational message
   without cryptographic protection to the source IP address.  Such a
   message is not part of an informational exchange, and the receiving
   node MUST NOT respond to it.  Doing so could cause a message loop.

2.  IKE Protocol Details and Variations

   IKE normally listens and sends on UDP port 500, though IKE messages
   may also be received on UDP port 4500 with a slightly different
   format (see section 2.23).  Since UDP is a datagram (unreliable)
   protocol, IKE includes in its definition recovery from transmission
   errors, including packet loss, packet replay, and packet forgery.
   IKE is designed to function so long as (1) at least one of a series
   of retransmitted packets reaches its destination before timing out;
   and (2) the channel is not so full of forged and replayed packets so
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   as to exhaust the network or CPU capacities of either endpoint.  Even
   in the absence of those minimum performance requirements, IKE is
   designed to fail cleanly (as though the network were broken).

   Although IKEv2 messages are intended to be short, they contain
   structures with no hard upper bound on size (in particular, X.509
   certificates), and IKEv2 itself does not have a mechanism for
   fragmenting large messages.  IP defines a mechanism for fragmentation
   of oversize UDP messages, but implementations vary in the maximum
   message size supported.  Furthermore, use of IP fragmentation opens
   an implementation to denial of service attacks [KPS03].  Finally,
   some NAT and/or firewall implementations may block IP fragments.

   All IKEv2 implementations MUST be able to send, receive, and process
   IKE messages that are up to 1280 bytes long, and they SHOULD be able
   to send, receive, and process messages that are up to 3000 bytes
   long.  IKEv2 implementations SHOULD be aware of the maximum UDP
   message size supported and MAY shorten messages by leaving out some
   certificates or cryptographic suite proposals if that will keep
   messages below the maximum.  Use of the "Hash and URL" formats rather
   than including certificates in exchanges where possible can avoid
   most problems.  Implementations and configuration should keep in
   mind, however, that if the URL lookups are possible only after the
   IPsec SA is established, recursion issues could prevent this
   technique from working.

2.1.  Use of Retransmission Timers

   All messages in IKE exist in pairs: a request and a response.  The
   setup of an IKE_SA normally consists of two request/response pairs.
   Once the IKE_SA is set up, either end of the security association may
   initiate requests at any time, and there can be many requests and
   responses "in flight" at any given moment.  But each message is
   labeled as either a request or a response, and for each
   request/response pair one end of the security association is the
   initiator and the other is the responder.

   For every pair of IKE messages, the initiator is responsible for
   retransmission in the event of a timeout.  The responder MUST never
   retransmit a response unless it receives a retransmission of the
   request.  In that event, the responder MUST ignore the retransmitted
   request except insofar as it triggers a retransmission of the
   response.  The initiator MUST remember each request until it receives
   the corresponding response.  The responder MUST remember each
   response until it receives a request whose sequence number is larger
   than the sequence number in the response plus its window size (see
   section 2.3).
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   IKE is a reliable protocol, in the sense that the initiator MUST
   retransmit a request until either it receives a corresponding reply
   OR it deems the IKE security association to have failed and it
   discards all state associated with the IKE_SA and any CHILD_SAs
   negotiated using that IKE_SA.

2.2.  Use of Sequence Numbers for Message ID

   Every IKE message contains a Message ID as part of its fixed header.
   This Message ID is used to match up requests and responses, and to
   identify retransmissions of messages.

   The Message ID is a 32-bit quantity, which is zero for the first IKE
   request in each direction.  The IKE_SA initial setup messages will
   always be numbered 0 and 1.  Each endpoint in the IKE Security
   Association maintains two "current" Message IDs: the next one to be
   used for a request it initiates and the next one it expects to see in
   a request from the other end.  These counters increment as requests
   are generated and received.  Responses always contain the same
   message ID as the corresponding request.  That means that after the
   initial exchange, each integer n may appear as the message ID in four
   distinct messages: the nth request from the original IKE initiator,
   the corresponding response, the nth request from the original IKE
   responder, and the corresponding response.  If the two ends make very
   different numbers of requests, the Message IDs in the two directions
   can be very different.  There is no ambiguity in the messages,
   however, because the (I)nitiator and (R)esponse bits in the message
   header specify which of the four messages a particular one is.

   Note that Message IDs are cryptographically protected and provide
   protection against message replays.  In the unlikely event that
   Message IDs grow too large to fit in 32 bits, the IKE_SA MUST be
   closed.  Rekeying an IKE_SA resets the sequence numbers.

2.3.  Window Size for Overlapping Requests

   In order to maximize IKE throughput, an IKE endpoint MAY issue
   multiple requests before getting a response to any of them if the
   other endpoint has indicated its ability to handle such requests.
   For simplicity, an IKE implementation MAY choose to process requests
   strictly in order and/or wait for a response to one request before
   issuing another.  Certain rules must be followed to ensure
   interoperability between implementations using different strategies.

   After an IKE_SA is set up, either end can initiate one or more
   requests.  These requests may pass one another over the network.  An
   IKE endpoint MUST be prepared to accept and process a request while
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   it has a request outstanding in order to avoid a deadlock in this
   situation.  An IKE endpoint SHOULD be prepared to accept and process
   multiple requests while it has a request outstanding.

   An IKE endpoint MUST wait for a response to each of its messages
   before sending a subsequent message unless it has received a
   SET_WINDOW_SIZE Notify message from its peer informing it that the
   peer is prepared to maintain state for multiple outstanding messages
   in order to allow greater throughput.

   An IKE endpoint MUST NOT exceed the peer’s stated window size for
   transmitted IKE requests.  In other words, if the responder stated
   its window size is N, then when the initiator needs to make a request
   X, it MUST wait until it has received responses to all requests up
   through request X-N.  An IKE endpoint MUST keep a copy of (or be able
   to regenerate exactly) each request it has sent until it receives the
   corresponding response.  An IKE endpoint MUST keep a copy of (or be
   able to regenerate exactly) the number of previous responses equal to
   its declared window size in case its response was lost and the
   initiator requests its retransmission by retransmitting the request.

   An IKE endpoint supporting a window size greater than one SHOULD be
   capable of processing incoming requests out of order to maximize
   performance in the event of network failures or packet reordering.

2.4.  State Synchronization and Connection Timeouts

   An IKE endpoint is allowed to forget all of its state associated with
   an IKE_SA and the collection of corresponding CHILD_SAs at any time.
   This is the anticipated behavior in the event of an endpoint crash
   and restart.  It is important when an endpoint either fails or
   reinitializes its state that the other endpoint detect those
   conditions and not continue to waste network bandwidth by sending
   packets over discarded SAs and having them fall into a black hole.

   Since IKE is designed to operate in spite of Denial of Service (DoS)
   attacks from the network, an endpoint MUST NOT conclude that the
   other endpoint has failed based on any routing information (e.g.,
   ICMP messages) or IKE messages that arrive without cryptographic
   protection (e.g., Notify messages complaining about unknown SPIs).
   An endpoint MUST conclude that the other endpoint has failed only
   when repeated attempts to contact it have gone unanswered for a
   timeout period or when a cryptographically protected INITIAL_CONTACT
   notification is received on a different IKE_SA to the same
   authenticated identity.  An endpoint SHOULD suspect that the other
   endpoint has failed based on routing information and initiate a
   request to see whether the other endpoint is alive.  To check whether
   the other side is alive, IKE specifies an empty INFORMATIONAL message
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   that (like all IKE requests) requires an acknowledgement (note that
   within the context of an IKE_SA, an "empty" message consists of an
   IKE header followed by an Encrypted payload that contains no
   payloads).  If a cryptographically protected message has been
   received from the other side recently, unprotected notifications MAY
   be ignored.  Implementations MUST limit the rate at which they take
   actions based on unprotected messages.

   Numbers of retries and lengths of timeouts are not covered in this
   specification because they do not affect interoperability.  It is
   suggested that messages be retransmitted at least a dozen times over
   a period of at least several minutes before giving up on an SA, but
   different environments may require different rules.  To be a good
   network citizen, retranmission times MUST increase exponentially to
   avoid flooding the network and making an existing congestion
   situation worse.  If there has only been outgoing traffic on all of
   the SAs associated with an IKE_SA, it is essential to confirm
   liveness of the other endpoint to avoid black holes.  If no
   cryptographically protected messages have been received on an IKE_SA
   or any of its CHILD_SAs recently, the system needs to perform a
   liveness check in order to prevent sending messages to a dead peer.
   Receipt of a fresh cryptographically protected message on an IKE_SA
   or any of its CHILD_SAs ensures liveness of the IKE_SA and all of its
   CHILD_SAs.  Note that this places requirements on the failure modes
   of an IKE endpoint.  An implementation MUST NOT continue sending on
   any SA if some failure prevents it from receiving on all of the
   associated SAs.  If CHILD_SAs can fail independently from one another
   without the associated IKE_SA being able to send a delete message,
   then they MUST be negotiated by separate IKE_SAs.

   There is a Denial of Service attack on the initiator of an IKE_SA
   that can be avoided if the initiator takes the proper care.  Since
   the first two messages of an SA setup are not cryptographically
   protected, an attacker could respond to the initiator’s message
   before the genuine responder and poison the connection setup attempt.
   To prevent this, the initiator MAY be willing to accept multiple
   responses to its first message, treat each as potentially legitimate,
   respond to it, and then discard all the invalid half-open connections
   when it receives a valid cryptographically protected response to any
   one of its requests.  Once a cryptographically valid response is
   received, all subsequent responses should be ignored whether or not
   they are cryptographically valid.

   Note that with these rules, there is no reason to negotiate and agree
   upon an SA lifetime.  If IKE presumes the partner is dead, based on
   repeated lack of acknowledgement to an IKE message, then the IKE SA
   and all CHILD_SAs set up through that IKE_SA are deleted.
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   An IKE endpoint may at any time delete inactive CHILD_SAs to recover
   resources used to hold their state.  If an IKE endpoint chooses to
   delete CHILD_SAs, it MUST send Delete payloads to the other end
   notifying it of the deletion.  It MAY similarly time out the IKE_SA.
   Closing the IKE_SA implicitly closes all associated CHILD_SAs.  In
   this case, an IKE endpoint SHOULD send a Delete payload indicating
   that it has closed the IKE_SA.

2.5.  Version Numbers and Forward Compatibility

   This document describes version 2.0 of IKE, meaning the major version
   number is 2 and the minor version number is zero.  It is likely that
   some implementations will want to support both version 1.0 and
   version 2.0, and in the future, other versions.

   The major version number should be incremented only if the packet
   formats or required actions have changed so dramatically that an
   older version node would not be able to interoperate with a newer
   version node if it simply ignored the fields it did not understand
   and took the actions specified in the older specification.  The minor
   version number indicates new capabilities, and MUST be ignored by a
   node with a smaller minor version number, but used for informational
   purposes by the node with the larger minor version number.  For
   example, it might indicate the ability to process a newly defined
   notification message.  The node with the larger minor version number
   would simply note that its correspondent would not be able to
   understand that message and therefore would not send it.

   If an endpoint receives a message with a higher major version number,
   it MUST drop the message and SHOULD send an unauthenticated
   notification message containing the highest version number it
   supports.  If an endpoint supports major version n, and major version
   m, it MUST support all versions between n and m.  If it receives a
   message with a major version that it supports, it MUST respond with
   that version number.  In order to prevent two nodes from being
   tricked into corresponding with a lower major version number than the
   maximum that they both support, IKE has a flag that indicates that
   the node is capable of speaking a higher major version number.

   Thus, the major version number in the IKE header indicates the
   version number of the message, not the highest version number that
   the transmitter supports.  If the initiator is capable of speaking
   versions n, n+1, and n+2, and the responder is capable of speaking
   versions n and n+1, then they will negotiate speaking n+1, where the
   initiator will set the flag indicating its ability to speak a higher
   version.  If they mistakenly (perhaps through an active attacker
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   sending error messages) negotiate to version n, then both will notice
   that the other side can support a higher version number, and they
   MUST break the connection and reconnect using version n+1.

   Note that IKEv1 does not follow these rules, because there is no way
   in v1 of noting that you are capable of speaking a higher version
   number.  So an active attacker can trick two v2-capable nodes into
   speaking v1.  When a v2-capable node negotiates down to v1, it SHOULD
   note that fact in its logs.

   Also for forward compatibility, all fields marked RESERVED MUST be
   set to zero by a version 2.0 implementation and their content MUST be
   ignored by a version 2.0 implementation ("Be conservative in what you
   send and liberal in what you receive").  In this way, future versions
   of the protocol can use those fields in a way that is guaranteed to
   be ignored by implementations that do not understand them.
   Similarly, payload types that are not defined are reserved for future
   use; implementations of version 2.0 MUST skip over those payloads and
   ignore their contents.

   IKEv2 adds a "critical" flag to each payload header for further
   flexibility for forward compatibility.  If the critical flag is set
   and the payload type is unrecognized, the message MUST be rejected
   and the response to the IKE request containing that payload MUST
   include a Notify payload UNSUPPORTED_CRITICAL_PAYLOAD, indicating an
   unsupported critical payload was included.  If the critical flag is
   not set and the payload type is unsupported, that payload MUST be
   ignored.

   Although new payload types may be added in the future and may appear
   interleaved with the fields defined in this specification,
   implementations MUST send the payloads defined in this specification
   in the order shown in the figures in section 2 and implementations
   SHOULD reject as invalid a message with those payloads in any other
   order.

2.6.  Cookies

   The term "cookies" originates with Karn and Simpson [RFC2522] in
   Photuris, an early proposal for key management with IPsec, and it has
   persisted.  The Internet Security Association and Key Management
   Protocol (ISAKMP) [MSST98] fixed message header includes two eight-
   octet fields titled "cookies", and that syntax is used by both IKEv1
   and IKEv2 though in IKEv2 they are referred to as the IKE SPI and
   there is a new separate field in a Notify payload holding the cookie.
   The initial two eight-octet fields in the header are used as a
   connection identifier at the beginning of IKE packets.  Each endpoint
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   chooses one of the two SPIs and SHOULD choose them so as to be unique
   identifiers of an IKE_SA.  An SPI value of zero is special and
   indicates that the remote SPI value is not yet known by the sender.

   Unlike ESP and AH where only the recipient’s SPI appears in the
   header of a message, in IKE the sender’s SPI is also sent in every
   message.  Since the SPI chosen by the original initiator of the
   IKE_SA is always sent first, an endpoint with multiple IKE_SAs open
   that wants to find the appropriate IKE_SA using the SPI it assigned
   must look at the I(nitiator) Flag bit in the header to determine
   whether it assigned the first or the second eight octets.

   In the first message of an initial IKE exchange, the initiator will
   not know the responder’s SPI value and will therefore set that field
   to zero.

   An expected attack against IKE is state and CPU exhaustion, where the
   target is flooded with session initiation requests from forged IP
   addresses.  This attack can be made less effective if an
   implementation of a responder uses minimal CPU and commits no state
   to an SA until it knows the initiator can receive packets at the
   address from which it claims to be sending them.  To accomplish this,
   a responder SHOULD -- when it detects a large number of half-open
   IKE_SAs -- reject initial IKE messages unless they contain a Notify
   payload of type COOKIE.  It SHOULD instead send an unprotected IKE
   message as a response and include COOKIE Notify payload with the
   cookie data to be returned.  Initiators who receive such responses
   MUST retry the IKE_SA_INIT with a Notify payload of type COOKIE
   containing the responder supplied cookie data as the first payload
   and all other payloads unchanged.  The initial exchange will then be
   as follows:

       Initiator                          Responder
       -----------                        -----------
       HDR(A,0), SAi1, KEi, Ni   -->

                                 <-- HDR(A,0), N(COOKIE)

       HDR(A,0), N(COOKIE), SAi1, KEi, Ni   -->

                                 <-- HDR(A,B), SAr1, KEr, Nr, [CERTREQ]

       HDR(A,B), SK {IDi, [CERT,] [CERTREQ,] [IDr,]
           AUTH, SAi2, TSi, TSr} -->

                                 <-- HDR(A,B), SK {IDr, [CERT,] AUTH,
                                                SAr2, TSi, TSr}
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   The first two messages do not affect any initiator or responder state
   except for communicating the cookie.  In particular, the message
   sequence numbers in the first four messages will all be zero and the
   message sequence numbers in the last two messages will be one. ’A’ is
   the SPI assigned by the initiator, while ’B’ is the SPI assigned by
   the responder.

   An IKE implementation SHOULD implement its responder cookie
   generation in such a way as to not require any saved state to
   recognize its valid cookie when the second IKE_SA_INIT message
   arrives.  The exact algorithms and syntax they use to generate
   cookies do not affect interoperability and hence are not specified
   here.  The following is an example of how an endpoint could use
   cookies to implement limited DOS protection.

   A good way to do this is to set the responder cookie to be:

      Cookie = <VersionIDofSecret> | Hash(Ni | IPi | SPIi | <secret>)

   where <secret> is a randomly generated secret known only to the
   responder and periodically changed and | indicates concatenation.
   <VersionIDofSecret> should be changed whenever <secret> is
   regenerated.  The cookie can be recomputed when the IKE_SA_INIT
   arrives the second time and compared to the cookie in the received
   message.  If it matches, the responder knows that the cookie was
   generated since the last change to <secret> and that IPi must be the
   same as the source address it saw the first time.  Incorporating SPIi
   into the calculation ensures that if multiple IKE_SAs are being set
   up in parallel they will all get different cookies (assuming the
   initiator chooses unique SPIi’s).  Incorporating Ni into the hash
   ensures that an attacker who sees only message 2 can’t successfully
   forge a message 3.

   If a new value for <secret> is chosen while there are connections in
   the process of being initialized, an IKE_SA_INIT might be returned
   with other than the current <VersionIDofSecret>.  The responder in
   that case MAY reject the message by sending another response with a
   new cookie or it MAY keep the old value of <secret> around for a
   short time and accept cookies computed from either one.  The
   responder SHOULD NOT accept cookies indefinitely after <secret> is
   changed, since that would defeat part of the denial of service
   protection.  The responder SHOULD change the value of <secret>
   frequently, especially if under attack.
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2.7.  Cryptographic Algorithm Negotiation

   The payload type known as "SA" indicates a proposal for a set of
   choices of IPsec protocols (IKE, ESP, and/or AH) for the SA as well
   as cryptographic algorithms associated with each protocol.

   An SA payload consists of one or more proposals.  Each proposal
   includes one or more protocols (usually one).  Each protocol contains
   one or more transforms -- each specifying a cryptographic algorithm.
   Each transform contains zero or more attributes (attributes are
   needed only if the transform identifier does not completely specify
   the cryptographic algorithm).

   This hierarchical structure was designed to efficiently encode
   proposals for cryptographic suites when the number of supported
   suites is large because multiple values are acceptable for multiple
   transforms.  The responder MUST choose a single suite, which MAY be
   any subset of the SA proposal following the rules below:

      Each proposal contains one or more protocols.  If a proposal is
      accepted, the SA response MUST contain the same protocols in the
      same order as the proposal.  The responder MUST accept a single
      proposal or reject them all and return an error. (Example: if a
      single proposal contains ESP and AH and that proposal is accepted,
      both ESP and AH MUST be accepted.  If ESP and AH are included in
      separate proposals, the responder MUST accept only one of them).

      Each IPsec protocol proposal contains one or more transforms.
      Each transform contains a transform type.  The accepted
      cryptographic suite MUST contain exactly one transform of each
      type included in the proposal.  For example: if an ESP proposal
      includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
      w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
      suite MUST contain one of the ENCR_ transforms and one of the
      AUTH_ transforms.  Thus, six combinations are acceptable.

   Since the initiator sends its Diffie-Hellman value in the
   IKE_SA_INIT, it must guess the Diffie-Hellman group that the
   responder will select from its list of supported groups.  If the
   initiator guesses wrong, the responder will respond with a Notify
   payload of type INVALID_KE_PAYLOAD indicating the selected group.  In
   this case, the initiator MUST retry the IKE_SA_INIT with the
   corrected Diffie-Hellman group.  The initiator MUST again propose its
   full set of acceptable cryptographic suites because the rejection
   message was unauthenticated and otherwise an active attacker could
   trick the endpoints into negotiating a weaker suite than a stronger
   one that they both prefer.
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2.8.  Rekeying

   IKE, ESP, and AH security associations use secret keys that SHOULD be
   used only for a limited amount of time and to protect a limited
   amount of data.  This limits the lifetime of the entire security
   association.  When the lifetime of a security association expires,
   the security association MUST NOT be used.  If there is demand, new
   security associations MAY be established.  Reestablishment of
   security associations to take the place of ones that expire is
   referred to as "rekeying".

   To allow for minimal IPsec implementations, the ability to rekey SAs
   without restarting the entire IKE_SA is optional.  An implementation
   MAY refuse all CREATE_CHILD_SA requests within an IKE_SA.  If an SA
   has expired or is about to expire and rekeying attempts using the
   mechanisms described here fail, an implementation MUST close the
   IKE_SA and any associated CHILD_SAs and then MAY start new ones.
   Implementations SHOULD support in-place rekeying of SAs, since doing
   so offers better performance and is likely to reduce the number of
   packets lost during the transition.

   To rekey a CHILD_SA within an existing IKE_SA, create a new,
   equivalent SA (see section 2.17 below), and when the new one is
   established, delete the old one.  To rekey an IKE_SA, establish a new
   equivalent IKE_SA (see section 2.18 below) with the peer to whom the
   old IKE_SA is shared using a CREATE_CHILD_SA within the existing
   IKE_SA.  An IKE_SA so created inherits all of the original IKE_SA’s
   CHILD_SAs.  Use the new IKE_SA for all control messages needed to
   maintain the CHILD_SAs created by the old IKE_SA, and delete the old
   IKE_SA.  The Delete payload to delete itself MUST be the last request
   sent over an IKE_SA.

   SAs SHOULD be rekeyed proactively, i.e., the new SA should be
   established before the old one expires and becomes unusable.  Enough
   time should elapse between the time the new SA is established and the
   old one becomes unusable so that traffic can be switched over to the
   new SA.

   A difference between IKEv1 and IKEv2 is that in IKEv1 SA lifetimes
   were negotiated.  In IKEv2, each end of the SA is responsible for
   enforcing its own lifetime policy on the SA and rekeying the SA when
   necessary.  If the two ends have different lifetime policies, the end
   with the shorter lifetime will end up always being the one to request
   the rekeying.  If an SA bundle has been inactive for a long time and
   if an endpoint would not initiate the SA in the absence of traffic,
   the endpoint MAY choose to close the SA instead of rekeying it when
   its lifetime expires.  It SHOULD do so if there has been no traffic
   since the last time the SA was rekeyed.
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   If the two ends have the same lifetime policies, it is possible that
   both will initiate a rekeying at the same time (which will result in
   redundant SAs).  To reduce the probability of this happening, the
   timing of rekeying requests SHOULD be jittered (delayed by a random
   amount of time after the need for rekeying is noticed).

   This form of rekeying may temporarily result in multiple similar SAs
   between the same pairs of nodes.  When there are two SAs eligible to
   receive packets, a node MUST accept incoming packets through either
   SA.  If redundant SAs are created though such a collision, the SA
   created with the lowest of the four nonces used in the two exchanges
   SHOULD be closed by the endpoint that created it.

   Note that IKEv2 deliberately allows parallel SAs with the same
   traffic selectors between common endpoints.  One of the purposes of
   this is to support traffic quality of service (QoS) differences among
   the SAs (see [RFC2474], [RFC2475], and section 4.1 of [RFC2983]).
   Hence unlike IKEv1, the combination of the endpoints and the traffic
   selectors may not uniquely identify an SA between those endpoints, so
   the IKEv1 rekeying heuristic of deleting SAs on the basis of
   duplicate traffic selectors SHOULD NOT be used.

   The node that initiated the surviving rekeyed SA SHOULD delete the
   replaced SA after the new one is established.

   There are timing windows -- particularly in the presence of lost
   packets -- where endpoints may not agree on the state of an SA.  The
   responder to a CREATE_CHILD_SA MUST be prepared to accept messages on
   an SA before sending its response to the creation request, so there
   is no ambiguity for the initiator.  The initiator MAY begin sending
   on an SA as soon as it processes the response.  The initiator,
   however, cannot receive on a newly created SA until it receives and
   processes the response to its CREATE_CHILD_SA request.  How, then, is
   the responder to know when it is OK to send on the newly created SA?

   From a technical correctness and interoperability perspective, the
   responder MAY begin sending on an SA as soon as it sends its response
   to the CREATE_CHILD_SA request.  In some situations, however, this
   could result in packets unnecessarily being dropped, so an
   implementation MAY want to defer such sending.

   The responder can be assured that the initiator is prepared to
   receive messages on an SA if either (1) it has received a
   cryptographically valid message on the new SA, or (2) the new SA
   rekeys an existing SA and it receives an IKE request to close the
   replaced SA.  When rekeying an SA, the responder SHOULD continue to
   send messages on the old SA until one of those events occurs.  When
   establishing a new SA, the responder MAY defer sending messages on a
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   new SA until either it receives one or a timeout has occurred.  If an
   initiator receives a message on an SA for which it has not received a
   response to its CREATE_CHILD_SA request, it SHOULD interpret that as
   a likely packet loss and retransmit the CREATE_CHILD_SA request.  An
   initiator MAY send a dummy message on a newly created SA if it has no
   messages queued in order to assure the responder that the initiator
   is ready to receive messages.

2.9.  Traffic Selector Negotiation

   When an IP packet is received by an RFC4301-compliant IPsec subsystem
   and matches a "protect" selector in its Security Policy Database
   (SPD), the subsystem MUST protect that packet with IPsec.  When no SA
   exists yet, it is the task of IKE to create it.  Maintenance of a
   system’s SPD is outside the scope of IKE (see [PFKEY] for an example
   protocol), though some implementations might update their SPD in
   connection with the running of IKE (for an example scenario, see
   section 1.1.3).

   Traffic Selector (TS) payloads allow endpoints to communicate some of
   the information from their SPD to their peers.  TS payloads specify
   the selection criteria for packets that will be forwarded over the
   newly set up SA.  This can serve as a consistency check in some
   scenarios to assure that the SPDs are consistent.  In others, it
   guides the dynamic update of the SPD.

   Two TS payloads appear in each of the messages in the exchange that
   creates a CHILD_SA pair.  Each TS payload contains one or more
   Traffic Selectors.  Each Traffic Selector consists of an address
   range (IPv4 or IPv6), a port range, and an IP protocol ID.  In
   support of the scenario described in section 1.1.3, an initiator may
   request that the responder assign an IP address and tell the
   initiator what it is.

   IKEv2 allows the responder to choose a subset of the traffic proposed
   by the initiator.  This could happen when the configurations of the
   two endpoints are being updated but only one end has received the new
   information.  Since the two endpoints may be configured by different
   people, the incompatibility may persist for an extended period even
   in the absence of errors.  It also allows for intentionally different
   configurations, as when one end is configured to tunnel all addresses
   and depends on the other end to have the up-to-date list.

   The first of the two TS payloads is known as TSi (Traffic Selector-
   initiator).  The second is known as TSr (Traffic Selector-responder).
   TSi specifies the source address of traffic forwarded from (or the
   destination address of traffic forwarded to) the initiator of the
   CHILD_SA pair.  TSr specifies the destination address of the traffic
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   forwarded to (or the source address of the traffic forwarded from)
   the responder of the CHILD_SA pair.  For example, if the original
   initiator request the creation of a CHILD_SA pair, and wishes to
   tunnel all traffic from subnet 192.0.1.* on the initiator’s side to
   subnet 192.0.2.* on the responder’s side, the initiator would include
   a single traffic selector in each TS payload.  TSi would specify the
   address range (192.0.1.0 - 192.0.1.255) and TSr would specify the
   address range (192.0.2.0 - 192.0.2.255).  Assuming that proposal was
   acceptable to the responder, it would send identical TS payloads
   back.  (Note: The IP address range 192.0.2.* has been reserved for
   use in examples in RFCs and similar documents.  This document needed
   two such ranges, and so also used 192.0.1.*. This should not be
   confused with any actual address.)

   The responder is allowed to narrow the choices by selecting a subset
   of the traffic, for instance by eliminating or narrowing the range of
   one or more members of the set of traffic selectors, provided the set
   does not become the NULL set.

   It is possible for the responder’s policy to contain multiple smaller
   ranges, all encompassed by the initiator’s traffic selector, and with
   the responder’s policy being that each of those ranges should be sent
   over a different SA.  Continuing the example above, the responder
   might have a policy of being willing to tunnel those addresses to and
   from the initiator, but might require that each address pair be on a
   separately negotiated CHILD_SA.  If the initiator generated its
   request in response to an incoming packet from 192.0.1.43 to
   192.0.2.123, there would be no way for the responder to determine
   which pair of addresses should be included in this tunnel, and it
   would have to make a guess or reject the request with a status of
   SINGLE_PAIR_REQUIRED.

   To enable the responder to choose the appropriate range in this case,
   if the initiator has requested the SA due to a data packet, the
   initiator SHOULD include as the first traffic selector in each of TSi
   and TSr a very specific traffic selector including the addresses in
   the packet triggering the request.  In the example, the initiator
   would include in TSi two traffic selectors: the first containing the
   address range (192.0.1.43 - 192.0.1.43) and the source port and IP
   protocol from the packet and the second containing (192.0.1.0 -
   192.0.1.255) with all ports and IP protocols.  The initiator would
   similarly include two traffic selectors in TSr.

   If the responder’s policy does not allow it to accept the entire set
   of traffic selectors in the initiator’s request, but does allow him
   to accept the first selector of TSi and TSr, then the responder MUST
   narrow the traffic selectors to a subset that includes the
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   initiator’s first choices.  In this example, the responder might
   respond with TSi being (192.0.1.43 - 192.0.1.43) with all ports and
   IP protocols.

   If the initiator creates the CHILD_SA pair not in response to an
   arriving packet, but rather, say, upon startup, then there may be no
   specific addresses the initiator prefers for the initial tunnel over
   any other.  In that case, the first values in TSi and TSr MAY be
   ranges rather than specific values, and the responder chooses a
   subset of the initiator’s TSi and TSr that are acceptable.  If more
   than one subset is acceptable but their union is not, the responder
   MUST accept some subset and MAY include a Notify payload of type
   ADDITIONAL_TS_POSSIBLE to indicate that the initiator might want to
   try again.  This case will occur only when the initiator and
   responder are configured differently from one another.  If the
   initiator and responder agree on the granularity of tunnels, the
   initiator will never request a tunnel wider than the responder will
   accept.  Such misconfigurations SHOULD be recorded in error logs.

2.10.  Nonces

   The IKE_SA_INIT messages each contain a nonce.  These nonces are used
   as inputs to cryptographic functions.  The CREATE_CHILD_SA request
   and the CREATE_CHILD_SA response also contain nonces.  These nonces
   are used to add freshness to the key derivation technique used to
   obtain keys for CHILD_SA, and to ensure creation of strong pseudo-
   random bits from the Diffie-Hellman key.  Nonces used in IKEv2 MUST
   be randomly chosen, MUST be at least 128 bits in size, and MUST be at
   least half the key size of the negotiated prf. ("prf" refers to
   "pseudo-random function", one of the cryptographic algorithms
   negotiated in the IKE exchange.)  If the same random number source is
   used for both keys and nonces, care must be taken to ensure that the
   latter use does not compromise the former.

2.11.  Address and Port Agility

   IKE runs over UDP ports 500 and 4500, and implicitly sets up ESP and
   AH associations for the same IP addresses it runs over.  The IP
   addresses and ports in the outer header are, however, not themselves
   cryptographically protected, and IKE is designed to work even through
   Network Address Translation (NAT) boxes.  An implementation MUST
   accept incoming requests even if the source port is not 500 or 4500,
   and MUST respond to the address and port from which the request was
   received.  It MUST specify the address and port at which the request
   was received as the source address and port in the response.  IKE
   functions identically over IPv4 or IPv6.
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2.12.  Reuse of Diffie-Hellman Exponentials

   IKE generates keying material using an ephemeral Diffie-Hellman
   exchange in order to gain the property of "perfect forward secrecy".
   This means that once a connection is closed and its corresponding
   keys are forgotten, even someone who has recorded all of the data
   from the connection and gets access to all of the long-term keys of
   the two endpoints cannot reconstruct the keys used to protect the
   conversation without doing a brute force search of the session key
   space.

   Achieving perfect forward secrecy requires that when a connection is
   closed, each endpoint MUST forget not only the keys used by the
   connection but also any information that could be used to recompute
   those keys.  In particular, it MUST forget the secrets used in the
   Diffie-Hellman calculation and any state that may persist in the
   state of a pseudo-random number generator that could be used to
   recompute the Diffie-Hellman secrets.

   Since the computing of Diffie-Hellman exponentials is computationally
   expensive, an endpoint may find it advantageous to reuse those
   exponentials for multiple connection setups.  There are several
   reasonable strategies for doing this.  An endpoint could choose a new
   exponential only periodically though this could result in less-than-
   perfect forward secrecy if some connection lasts for less than the
   lifetime of the exponential.  Or it could keep track of which
   exponential was used for each connection and delete the information
   associated with the exponential only when some corresponding
   connection was closed.  This would allow the exponential to be reused
   without losing perfect forward secrecy at the cost of maintaining
   more state.

   Decisions as to whether and when to reuse Diffie-Hellman exponentials
   is a private decision in the sense that it will not affect
   interoperability.  An implementation that reuses exponentials MAY
   choose to remember the exponential used by the other endpoint on past
   exchanges and if one is reused to avoid the second half of the
   calculation.

2.13.  Generating Keying Material

   In the context of the IKE_SA, four cryptographic algorithms are
   negotiated: an encryption algorithm, an integrity protection
   algorithm, a Diffie-Hellman group, and a pseudo-random function
   (prf).  The pseudo-random function is used for the construction of
   keying material for all of the cryptographic algorithms used in both
   the IKE_SA and the CHILD_SAs.

Kaufman                     Standards Track                    [Page 27]



RFC 4306                         IKEv2                     December 2005

   We assume that each encryption algorithm and integrity protection
   algorithm uses a fixed-size key and that any randomly chosen value of
   that fixed size can serve as an appropriate key.  For algorithms that
   accept a variable length key, a fixed key size MUST be specified as
   part of the cryptographic transform negotiated.  For algorithms for
   which not all values are valid keys (such as DES or 3DES with key
   parity), the algorithm by which keys are derived from arbitrary
   values MUST be specified by the cryptographic transform.  For
   integrity protection functions based on Hashed Message Authentication
   Code (HMAC), the fixed key size is the size of the output of the
   underlying hash function.  When the prf function takes a variable
   length key, variable length data, and produces a fixed-length output
   (e.g., when using HMAC), the formulas in this document apply.  When
   the key for the prf function has fixed length, the data provided as a
   key is truncated or padded with zeros as necessary unless exceptional
   processing is explained following the formula.

   Keying material will always be derived as the output of the
   negotiated prf algorithm.  Since the amount of keying material needed
   may be greater than the size of the output of the prf algorithm, we
   will use the prf iteratively.  We will use the terminology prf+ to
   describe the function that outputs a pseudo-random stream based on
   the inputs to a prf as follows: (where | indicates concatenation)

   prf+ (K,S) = T1 | T2 | T3 | T4 | ...

   where:
   T1 = prf (K, S | 0x01)
   T2 = prf (K, T1 | S | 0x02)
   T3 = prf (K, T2 | S | 0x03)
   T4 = prf (K, T3 | S | 0x04)

   continuing as needed to compute all required keys.  The keys are
   taken from the output string without regard to boundaries (e.g., if
   the required keys are a 256-bit Advanced Encryption Standard (AES)
   key and a 160-bit HMAC key, and the prf function generates 160 bits,
   the AES key will come from T1 and the beginning of T2, while the HMAC
   key will come from the rest of T2 and the beginning of T3).

   The constant concatenated to the end of each string feeding the prf
   is a single octet. prf+ in this document is not defined beyond 255
   times the size of the prf output.

2.14.  Generating Keying Material for the IKE_SA

   The shared keys are computed as follows.  A quantity called SKEYSEED
   is calculated from the nonces exchanged during the IKE_SA_INIT
   exchange and the Diffie-Hellman shared secret established during that
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   exchange.  SKEYSEED is used to calculate seven other secrets: SK_d
   used for deriving new keys for the CHILD_SAs established with this
   IKE_SA; SK_ai and SK_ar used as a key to the integrity protection
   algorithm for authenticating the component messages of subsequent
   exchanges; SK_ei and SK_er used for encrypting (and of course
   decrypting) all subsequent exchanges; and SK_pi and SK_pr, which are
   used when generating an AUTH payload.

   SKEYSEED and its derivatives are computed as follows:

       SKEYSEED = prf(Ni | Nr, g^ir)

       {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+
                 (SKEYSEED, Ni | Nr | SPIi | SPIr )

   (indicating that the quantities SK_d, SK_ai, SK_ar, SK_ei, SK_er,
   SK_pi, and SK_pr are taken in order from the generated bits of the
   prf+).  g^ir is the shared secret from the ephemeral Diffie-Hellman
   exchange.  g^ir is represented as a string of octets in big endian
   order padded with zeros if necessary to make it the length of the
   modulus.  Ni and Nr are the nonces, stripped of any headers.  If the
   negotiated prf takes a fixed-length key and the lengths of Ni and Nr
   do not add up to that length, half the bits must come from Ni and
   half from Nr, taking the first bits of each.

   The two directions of traffic flow use different keys.  The keys used
   to protect messages from the original initiator are SK_ai and SK_ei.
   The keys used to protect messages in the other direction are SK_ar
   and SK_er.  Each algorithm takes a fixed number of bits of keying
   material, which is specified as part of the algorithm.  For integrity
   algorithms based on a keyed hash, the key size is always equal to the
   length of the output of the underlying hash function.

2.15.  Authentication of the IKE_SA

   When not using extensible authentication (see section 2.16), the
   peers are authenticated by having each sign (or MAC using a shared
   secret as the key) a block of data.  For the responder, the octets to
   be signed start with the first octet of the first SPI in the header
   of the second message and end with the last octet of the last payload
   in the second message.  Appended to this (for purposes of computing
   the signature) are the initiator’s nonce Ni (just the value, not the
   payload containing it), and the value prf(SK_pr,IDr’) where IDr’ is
   the responder’s ID payload excluding the fixed header.  Note that
   neither the nonce Ni nor the value prf(SK_pr,IDr’) are transmitted.
   Similarly, the initiator signs the first message, starting with the
   first octet of the first SPI in the header and ending with the last
   octet of the last payload.  Appended to this (for purposes of

Kaufman                     Standards Track                    [Page 29]



RFC 4306                         IKEv2                     December 2005

   computing the signature) are the responder’s nonce Nr, and the value
   prf(SK_pi,IDi’).  In the above calculation, IDi’ and IDr’ are the
   entire ID payloads excluding the fixed header.  It is critical to the
   security of the exchange that each side sign the other side’s nonce.

   Note that all of the payloads are included under the signature,
   including any payload types not defined in this document.  If the
   first message of the exchange is sent twice (the second time with a
   responder cookie and/or a different Diffie-Hellman group), it is the
   second version of the message that is signed.

   Optionally, messages 3 and 4 MAY include a certificate, or
   certificate chain providing evidence that the key used to compute a
   digital signature belongs to the name in the ID payload.  The
   signature or MAC will be computed using algorithms dictated by the
   type of key used by the signer, and specified by the Auth Method
   field in the Authentication payload.  There is no requirement that
   the initiator and responder sign with the same cryptographic
   algorithms.  The choice of cryptographic algorithms depends on the
   type of key each has.  In particular, the initiator may be using a
   shared key while the responder may have a public signature key and
   certificate.  It will commonly be the case (but it is not required)
   that if a shared secret is used for authentication that the same key
   is used in both directions.  Note that it is a common but typically
   insecure practice to have a shared key derived solely from a user-
   chosen password without incorporating another source of randomness.

   This is typically insecure because user-chosen passwords are unlikely
   to have sufficient unpredictability to resist dictionary attacks and
   these attacks are not prevented in this authentication method.
   (Applications using password-based authentication for bootstrapping
   and IKE_SA should use the authentication method in section 2.16,
   which is designed to prevent off-line dictionary attacks.)  The pre-
   shared key SHOULD contain as much unpredictability as the strongest
   key being negotiated.  In the case of a pre-shared key, the AUTH
   value is computed as:

      AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <msg octets>)

   where the string "Key Pad for IKEv2" is 17 ASCII characters without
   null termination.  The shared secret can be variable length.  The pad
   string is added so that if the shared secret is derived from a
   password, the IKE implementation need not store the password in
   cleartext, but rather can store the value prf(Shared Secret,"Key Pad
   for IKEv2"), which could not be used as a password equivalent for
   protocols other than IKEv2.  As noted above, deriving the shared
   secret from a password is not secure.  This construction is used
   because it is anticipated that people will do it anyway.  The
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   management interface by which the Shared Secret is provided MUST
   accept ASCII strings of at least 64 octets and MUST NOT add a null
   terminator before using them as shared secrets.  It MUST also accept
   a HEX encoding of the Shared Secret.  The management interface MAY
   accept other encodings if the algorithm for translating the encoding
   to a binary string is specified.  If the negotiated prf takes a
   fixed-size key, the shared secret MUST be of that fixed size.

2.16.  Extensible Authentication Protocol Methods

   In addition to authentication using public key signatures and shared
   secrets, IKE supports authentication using methods defined in RFC
   3748 [EAP].  Typically, these methods are asymmetric (designed for a
   user authenticating to a server), and they may not be mutual.  For
   this reason, these protocols are typically used to authenticate the
   initiator to the responder and MUST be used in conjunction with a
   public key signature based authentication of the responder to the
   initiator.  These methods are often associated with mechanisms
   referred to as "Legacy Authentication" mechanisms.

   While this memo references [EAP] with the intent that new methods can
   be added in the future without updating this specification, some
   simpler variations are documented here and in section 3.16.  [EAP]
   defines an authentication protocol requiring a variable number of
   messages.  Extensible Authentication is implemented in IKE as
   additional IKE_AUTH exchanges that MUST be completed in order to
   initialize the IKE_SA.

   An initiator indicates a desire to use extensible authentication by
   leaving out the AUTH payload from message 3.  By including an IDi
   payload but not an AUTH payload, the initiator has declared an
   identity but has not proven it.  If the responder is willing to use
   an extensible authentication method, it will place an Extensible
   Authentication Protocol (EAP) payload in message 4 and defer sending
   SAr2, TSi, and TSr until initiator authentication is complete in a
   subsequent IKE_AUTH exchange.  In the case of a minimal extensible
   authentication, the initial SA establishment will appear as follows:
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       Initiator                          Responder
      -----------                        -----------
       HDR, SAi1, KEi, Ni         -->

                                  <--    HDR, SAr1, KEr, Nr, [CERTREQ]

       HDR, SK {IDi, [CERTREQ,] [IDr,]
                SAi2, TSi, TSr}   -->

                                  <--    HDR, SK {IDr, [CERT,] AUTH,
                                                EAP }

       HDR, SK {EAP}              -->

                                  <--    HDR, SK {EAP (success)}

       HDR, SK {AUTH}             -->

                                  <--    HDR, SK {AUTH, SAr2, TSi, TSr }

   For EAP methods that create a shared key as a side effect of
   authentication, that shared key MUST be used by both the initiator
   and responder to generate AUTH payloads in messages 7 and 8 using the
   syntax for shared secrets specified in section 2.15.  The shared key
   from EAP is the field from the EAP specification named MSK.  The
   shared key generated during an IKE exchange MUST NOT be used for any
   other purpose.

   EAP methods that do not establish a shared key SHOULD NOT be used, as
   they are subject to a number of man-in-the-middle attacks [EAPMITM]
   if these EAP methods are used in other protocols that do not use a
   server-authenticated tunnel.  Please see the Security Considerations
   section for more details.  If EAP methods that do not generate a
   shared key are used, the AUTH payloads in messages 7 and 8 MUST be
   generated using SK_pi and SK_pr, respectively.

   The initiator of an IKE_SA using EAP SHOULD be capable of extending
   the initial protocol exchange to at least ten IKE_AUTH exchanges in
   the event the responder sends notification messages and/or retries
   the authentication prompt.  Once the protocol exchange defined by the
   chosen EAP authentication method has successfully terminated, the
   responder MUST send an EAP payload containing the Success message.
   Similarly, if the authentication method has failed, the responder
   MUST send an EAP payload containing the Failure message.  The
   responder MAY at any time terminate the IKE exchange by sending an
   EAP payload containing the Failure message.
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   Following such an extended exchange, the EAP AUTH payloads MUST be
   included in the two messages following the one containing the EAP
   Success message.

2.17.  Generating Keying Material for CHILD_SAs

   A single CHILD_SA is created by the IKE_AUTH exchange, and additional
   CHILD_SAs can optionally be created in CREATE_CHILD_SA exchanges.
   Keying material for them is generated as follows:

      KEYMAT = prf+(SK_d, Ni | Nr)

   Where Ni and Nr are the nonces from the IKE_SA_INIT exchange if this
   request is the first CHILD_SA created or the fresh Ni and Nr from the
   CREATE_CHILD_SA exchange if this is a subsequent creation.

   For CREATE_CHILD_SA exchanges including an optional Diffie-Hellman
   exchange, the keying material is defined as:

      KEYMAT = prf+(SK_d, g^ir (new) | Ni | Nr )

   where g^ir (new) is the shared secret from the ephemeral Diffie-
   Hellman exchange of this CREATE_CHILD_SA exchange (represented as an
   octet string in big endian order padded with zeros in the high-order
   bits if necessary to make it the length of the modulus).

   A single CHILD_SA negotiation may result in multiple security
   associations.  ESP and AH SAs exist in pairs (one in each direction),
   and four SAs could be created in a single CHILD_SA negotiation if a
   combination of ESP and AH is being negotiated.

   Keying material MUST be taken from the expanded KEYMAT in the
   following order:

      All keys for SAs carrying data from the initiator to the responder
      are taken before SAs going in the reverse direction.

      If multiple IPsec protocols are negotiated, keying material is
      taken in the order in which the protocol headers will appear in
      the encapsulated packet.

      If a single protocol has both encryption and authentication keys,
      the encryption key is taken from the first octets of KEYMAT and
      the authentication key is taken from the next octets.

   Each cryptographic algorithm takes a fixed number of bits of keying
   material specified as part of the algorithm.
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2.18.  Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

   The CREATE_CHILD_SA exchange can be used to rekey an existing IKE_SA
   (see section 2.8).  New initiator and responder SPIs are supplied in
   the SPI fields.  The TS payloads are omitted when rekeying an IKE_SA.
   SKEYSEED for the new IKE_SA is computed using SK_d from the existing
   IKE_SA as follows:

       SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)

   where g^ir (new) is the shared secret from the ephemeral Diffie-
   Hellman exchange of this CREATE_CHILD_SA exchange (represented as an
   octet string in big endian order padded with zeros if necessary to
   make it the length of the modulus) and Ni and Nr are the two nonces
   stripped of any headers.

   The new IKE_SA MUST reset its message counters to 0.

   SK_d, SK_ai, SK_ar, SK_ei, and SK_er are computed from SKEYSEED as
   specified in section 2.14.

2.19.  Requesting an Internal Address on a Remote Network

   Most commonly occurring in the endpoint-to-security-gateway scenario,
   an endpoint may need an IP address in the network protected by the
   security gateway and may need to have that address dynamically
   assigned.  A request for such a temporary address can be included in
   any request to create a CHILD_SA (including the implicit request in
   message 3) by including a CP payload.

   This function provides address allocation to an IPsec Remote Access
   Client (IRAC) trying to tunnel into a network protected by an IPsec
   Remote Access Server (IRAS).  Since the IKE_AUTH exchange creates an
   IKE_SA and a CHILD_SA, the IRAC MUST request the IRAS-controlled
   address (and optionally other information concerning the protected
   network) in the IKE_AUTH exchange.  The IRAS may procure an address
   for the IRAC from any number of sources such as a DHCP/BOOTP server
   or its own address pool.

       Initiator                           Responder
      -----------------------------       ---------------------------
       HDR, SK {IDi, [CERT,] [CERTREQ,]
        [IDr,] AUTH, CP(CFG_REQUEST),
        SAi2, TSi, TSr}              -->

                                     <--   HDR, SK {IDr, [CERT,] AUTH,
                                            CP(CFG_REPLY), SAr2,
                                            TSi, TSr}
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   In all cases, the CP payload MUST be inserted before the SA payload.
   In variations of the protocol where there are multiple IKE_AUTH
   exchanges, the CP payloads MUST be inserted in the messages
   containing the SA payloads.

   CP(CFG_REQUEST) MUST contain at least an INTERNAL_ADDRESS attribute
   (either IPv4 or IPv6) but MAY contain any number of additional
   attributes the initiator wants returned in the response.

   For example, message from initiator to responder:
      CP(CFG_REQUEST)=
        INTERNAL_ADDRESS(0.0.0.0)
        INTERNAL_NETMASK(0.0.0.0)
        INTERNAL_DNS(0.0.0.0)
      TSi = (0, 0-65535,0.0.0.0-255.255.255.255)
      TSr = (0, 0-65535,0.0.0.0-255.255.255.255)

   NOTE: Traffic Selectors contain (protocol, port range, address
   range).

   Message from responder to initiator:

      CP(CFG_REPLY)=
        INTERNAL_ADDRESS(192.0.2.202)
        INTERNAL_NETMASK(255.255.255.0)
        INTERNAL_SUBNET(192.0.2.0/255.255.255.0)
      TSi = (0, 0-65535,192.0.2.202-192.0.2.202)
      TSr = (0, 0-65535,192.0.2.0-192.0.2.255)

   All returned values will be implementation dependent.  As can be seen
   in the above example, the IRAS MAY also send other attributes that
   were not included in CP(CFG_REQUEST) and MAY ignore the non-mandatory
   attributes that it does not support.

   The responder MUST NOT send a CFG_REPLY without having first received
   a CP(CFG_REQUEST) from the initiator, because we do not want the IRAS
   to perform an unnecessary configuration lookup if the IRAC cannot
   process the REPLY.  In the case where the IRAS’s configuration
   requires that CP be used for a given identity IDi, but IRAC has
   failed to send a CP(CFG_REQUEST), IRAS MUST fail the request, and
   terminate the IKE exchange with a FAILED_CP_REQUIRED error.

2.20.  Requesting the Peer’s Version

   An IKE peer wishing to inquire about the other peer’s IKE software
   version information MAY use the method below.  This is an example of
   a configuration request within an INFORMATIONAL exchange, after the
   IKE_SA and first CHILD_SA have been created.
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   An IKE implementation MAY decline to give out version information
   prior to authentication or even after authentication to prevent
   trolling in case some implementation is known to have some security
   weakness.  In that case, it MUST either return an empty string or no
   CP payload if CP is not supported.

       Initiator                           Responder
      -----------------------------       --------------------------
      HDR, SK{CP(CFG_REQUEST)}      -->
                                    <--    HDR, SK{CP(CFG_REPLY)}

      CP(CFG_REQUEST)=
        APPLICATION_VERSION("")

      CP(CFG_REPLY) APPLICATION_VERSION("foobar v1.3beta, (c) Foo Bar
        Inc.")

2.21.  Error Handling

   There are many kinds of errors that can occur during IKE processing.
   If a request is received that is badly formatted or unacceptable for
   reasons of policy (e.g., no matching cryptographic algorithms), the
   response MUST contain a Notify payload indicating the error.  If an
   error occurs outside the context of an IKE request (e.g., the node is
   getting ESP messages on a nonexistent SPI), the node SHOULD initiate
   an INFORMATIONAL exchange with a Notify payload describing the
   problem.

   Errors that occur before a cryptographically protected IKE_SA is
   established must be handled very carefully.  There is a trade-off
   between wanting to be helpful in diagnosing a problem and responding
   to it and wanting to avoid being a dupe in a denial of service attack
   based on forged messages.

   If a node receives a message on UDP port 500 or 4500 outside the
   context of an IKE_SA known to it (and not a request to start one), it
   may be the result of a recent crash of the node.  If the message is
   marked as a response, the node MAY audit the suspicious event but
   MUST NOT respond.  If the message is marked as a request, the node
   MAY audit the suspicious event and MAY send a response.  If a
   response is sent, the response MUST be sent to the IP address and
   port from whence it came with the same IKE SPIs and the Message ID
   copied.  The response MUST NOT be cryptographically protected and
   MUST contain a Notify payload indicating INVALID_IKE_SPI.

   A node receiving such an unprotected Notify payload MUST NOT respond
   and MUST NOT change the state of any existing SAs.  The message might
   be a forgery or might be a response the genuine correspondent was
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   tricked into sending.  A node SHOULD treat such a message (and also a
   network message like ICMP destination unreachable) as a hint that
   there might be problems with SAs to that IP address and SHOULD
   initiate a liveness test for any such IKE_SA.  An implementation
   SHOULD limit the frequency of such tests to avoid being tricked into
   participating in a denial of service attack.

   A node receiving a suspicious message from an IP address with which
   it has an IKE_SA MAY send an IKE Notify payload in an IKE
   INFORMATIONAL exchange over that SA.  The recipient MUST NOT change
   the state of any SA’s as a result but SHOULD audit the event to aid
   in diagnosing malfunctions.  A node MUST limit the rate at which it
   will send messages in response to unprotected messages.

2.22.  IPComp

   Use of IP compression [IPCOMP] can be negotiated as part of the setup
   of a CHILD_SA.  While IP compression involves an extra header in each
   packet and a compression parameter index (CPI), the virtual
   "compression association" has no life outside the ESP or AH SA that
   contains it.  Compression associations disappear when the
   corresponding ESP or AH SA goes away.  It is not explicitly mentioned
   in any DELETE payload.

   Negotiation of IP compression is separate from the negotiation of
   cryptographic parameters associated with a CHILD_SA.  A node
   requesting a CHILD_SA MAY advertise its support for one or more
   compression algorithms through one or more Notify payloads of type
   IPCOMP_SUPPORTED.  The response MAY indicate acceptance of a single
   compression algorithm with a Notify payload of type IPCOMP_SUPPORTED.
   These payloads MUST NOT occur in messages that do not contain SA
   payloads.

   Although there has been discussion of allowing multiple compression
   algorithms to be accepted and to have different compression
   algorithms available for the two directions of a CHILD_SA,
   implementations of this specification MUST NOT accept an IPComp
   algorithm that was not proposed, MUST NOT accept more than one, and
   MUST NOT compress using an algorithm other than one proposed and
   accepted in the setup of the CHILD_SA.

   A side effect of separating the negotiation of IPComp from
   cryptographic parameters is that it is not possible to propose
   multiple cryptographic suites and propose IP compression with some of
   them but not others.
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2.23.  NAT Traversal

   Network Address Translation (NAT) gateways are a controversial
   subject.  This section briefly describes what they are and how they
   are likely to act on IKE traffic.  Many people believe that NATs are
   evil and that we should not design our protocols so as to make them
   work better.  IKEv2 does specify some unintuitive processing rules in
   order that NATs are more likely to work.

   NATs exist primarily because of the shortage of IPv4 addresses,
   though there are other rationales.  IP nodes that are "behind" a NAT
   have IP addresses that are not globally unique, but rather are
   assigned from some space that is unique within the network behind the
   NAT but that are likely to be reused by nodes behind other NATs.
   Generally, nodes behind NATs can communicate with other nodes behind
   the same NAT and with nodes with globally unique addresses, but not
   with nodes behind other NATs.  There are exceptions to that rule.
   When those nodes make connections to nodes on the real Internet, the
   NAT gateway "translates" the IP source address to an address that
   will be routed back to the gateway.  Messages to the gateway from the
   Internet have their destination addresses "translated" to the
   internal address that will route the packet to the correct endnode.

   NATs are designed to be "transparent" to endnodes.  Neither software
   on the node behind the NAT nor the node on the Internet requires
   modification to communicate through the NAT.  Achieving this
   transparency is more difficult with some protocols than with others.
   Protocols that include IP addresses of the endpoints within the
   payloads of the packet will fail unless the NAT gateway understands
   the protocol and modifies the internal references as well as those in
   the headers.  Such knowledge is inherently unreliable, is a network
   layer violation, and often results in subtle problems.

   Opening an IPsec connection through a NAT introduces special
   problems.  If the connection runs in transport mode, changing the IP
   addresses on packets will cause the checksums to fail and the NAT
   cannot correct the checksums because they are cryptographically
   protected.  Even in tunnel mode, there are routing problems because
   transparently translating the addresses of AH and ESP packets
   requires special logic in the NAT and that logic is heuristic and
   unreliable in nature.  For that reason, IKEv2 can negotiate UDP
   encapsulation of IKE and ESP packets.  This encoding is slightly less
   efficient but is easier for NATs to process.  In addition, firewalls
   may be configured to pass IPsec traffic over UDP but not ESP/AH or
   vice versa.
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   It is a common practice of NATs to translate TCP and UDP port numbers
   as well as addresses and use the port numbers of inbound packets to
   decide which internal node should get a given packet.  For this
   reason, even though IKE packets MUST be sent from and to UDP port
   500, they MUST be accepted coming from any port and responses MUST be
   sent to the port from whence they came.  This is because the ports
   may be modified as the packets pass through NATs.  Similarly, IP
   addresses of the IKE endpoints are generally not included in the IKE
   payloads because the payloads are cryptographically protected and
   could not be transparently modified by NATs.

   Port 4500 is reserved for UDP-encapsulated ESP and IKE.  When working
   through a NAT, it is generally better to pass IKE packets over port
   4500 because some older NATs handle IKE traffic on port 500 cleverly
   in an attempt to transparently establish IPsec connections between
   endpoints that don’t handle NAT traversal themselves.  Such NATs may
   interfere with the straightforward NAT traversal envisioned by this
   document, so an IPsec endpoint that discovers a NAT between it and
   its correspondent MUST send all subsequent traffic to and from port
   4500, which NATs should not treat specially (as they might with port
   500).

   The specific requirements for supporting NAT traversal [RFC3715] are
   listed below.  Support for NAT traversal is optional.  In this
   section only, requirements listed as MUST apply only to
   implementations supporting NAT traversal.

      IKE MUST listen on port 4500 as well as port 500.  IKE MUST
      respond to the IP address and port from which packets arrived.

      Both IKE initiator and responder MUST include in their IKE_SA_INIT
      packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
      NAT_DETECTION_DESTINATION_IP.  Those payloads can be used to
      detect if there is NAT between the hosts, and which end is behind
      the NAT.  The location of the payloads in the IKE_SA_INIT packets
      are just after the Ni and Nr payloads (before the optional CERTREQ
      payload).

      If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
      the hash of the source IP and port found from the IP header of the
      packet containing the payload, it means that the other end is
      behind NAT (i.e., someone along the route changed the source
      address of the original packet to match the address of the NAT
      box).  In this case, this end should allow dynamic update of the
      other ends IP address, as described later.
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      If the NAT_DETECTION_DESTINATION_IP payload received does not
      match the hash of the destination IP and port found from the IP
      header of the packet containing the payload, it means that this
      end is behind a NAT.  In this case, this end SHOULD start sending
      keepalive packets as explained in [Hutt05].

      The IKE initiator MUST check these payloads if present and if they
      do not match the addresses in the outer packet MUST tunnel all
      future IKE and ESP packets associated with this IKE_SA over UDP
      port 4500.

      To tunnel IKE packets over UDP port 4500, the IKE header has four
      octets of zero prepended and the result immediately follows the
      UDP header.  To tunnel ESP packets over UDP port 4500, the ESP
      header immediately follows the UDP header.  Since the first four
      bytes of the ESP header contain the SPI, and the SPI cannot
      validly be zero, it is always possible to distinguish ESP and IKE
      messages.

      The original source and destination IP address required for the
      transport mode TCP and UDP packet checksum fixup (see [Hutt05])
      are obtained from the Traffic Selectors associated with the
      exchange.  In the case of NAT traversal, the Traffic Selectors
      MUST contain exactly one IP address, which is then used as the
      original IP address.

      There are cases where a NAT box decides to remove mappings that
      are still alive (for example, the keepalive interval is too long,
      or the NAT box is rebooted).  To recover in these cases, hosts
      that are not behind a NAT SHOULD send all packets (including
      retransmission packets) to the IP address and port from the last
      valid authenticated packet from the other end (i.e., dynamically
      update the address).  A host behind a NAT SHOULD NOT do this
      because it opens a DoS attack possibility.  Any authenticated IKE
      packet or any authenticated UDP-encapsulated ESP packet can be
      used to detect that the IP address or the port has changed.

      Note that similar but probably not identical actions will likely
      be needed to make IKE work with Mobile IP, but such processing is
      not addressed by this document.

2.24.  Explicit Congestion Notification (ECN)

   When IPsec tunnels behave as originally specified in [RFC2401], ECN
   usage is not appropriate for the outer IP headers because tunnel
   decapsulation processing discards ECN congestion indications to the
   detriment of the network.  ECN support for IPsec tunnels for IKEv1-
   based IPsec requires multiple operating modes and negotiation (see
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   [RFC3168]).  IKEv2 simplifies this situation by requiring that ECN be
   usable in the outer IP headers of all tunnel-mode IPsec SAs created
   by IKEv2.  Specifically, tunnel encapsulators and decapsulators for
   all tunnel-mode SAs created by IKEv2 MUST support the ECN full-
   functionality option for tunnels specified in [RFC3168] and MUST
   implement the tunnel encapsulation and decapsulation processing
   specified in [RFC4301] to prevent discarding of ECN congestion
   indications.

3.  Header and Payload Formats

3.1.  The IKE Header

   IKE messages use UDP ports 500 and/or 4500, with one IKE message per
   UDP datagram.  Information from the beginning of the packet through
   the UDP header is largely ignored except that the IP addresses and
   UDP ports from the headers are reversed and used for return packets.
   When sent on UDP port 500, IKE messages begin immediately following
   the UDP header.  When sent on UDP port 4500, IKE messages have
   prepended four octets of zero.  These four octets of zero are not
   part of the IKE message and are not included in any of the length
   fields or checksums defined by IKE.  Each IKE message begins with the
   IKE header, denoted HDR in this memo.  Following the header are one
   or more IKE payloads each identified by a "Next Payload" field in the
   preceding payload.  Payloads are processed in the order in which they
   appear in an IKE message by invoking the appropriate processing
   routine according to the "Next Payload" field in the IKE header and
   subsequently according to the "Next Payload" field in the IKE payload
   itself until a "Next Payload" field of zero indicates that no
   payloads follow.  If a payload of type "Encrypted" is found, that
   payload is decrypted and its contents parsed as additional payloads.
   An Encrypted payload MUST be the last payload in a packet and an
   Encrypted payload MUST NOT contain another Encrypted payload.

   The Recipient SPI in the header identifies an instance of an IKE
   security association.  It is therefore possible for a single instance
   of IKE to multiplex distinct sessions with multiple peers.

   All multi-octet fields representing integers are laid out in big
   endian order (aka most significant byte first, or network byte
   order).

   The format of the IKE header is shown in Figure 4.
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                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                       IKE_SA Initiator’s SPI                  !
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                       IKE_SA Responder’s SPI                  !
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !  Next Payload ! MjVer ! MnVer ! Exchange Type !     Flags     !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                          Message ID                           !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                            Length                             !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 4:  IKE Header Format

      o  Initiator’s SPI (8 octets) - A value chosen by the
         initiator to identify a unique IKE security association.  This
         value MUST NOT be zero.

      o  Responder’s SPI (8 octets) - A value chosen by the
         responder to identify a unique IKE security association.  This
         value MUST be zero in the first message of an IKE Initial
         Exchange (including repeats of that message including a
         cookie) and MUST NOT be zero in any other message.

      o  Next Payload (1 octet) - Indicates the type of payload that
         immediately follows the header.  The format and value of each
         payload are defined below.

      o  Major Version (4 bits) - Indicates the major version of the IKE
         protocol in use.  Implementations based on this version of IKE
         MUST set the Major Version to 2.  Implementations based on
         previous versions of IKE and ISAKMP MUST set the Major Version
         to 1.  Implementations based on this version of IKE MUST reject
         or ignore messages containing a version number greater than
         2.

      o  Minor Version (4 bits) - Indicates the minor version of the
         IKE protocol in use.  Implementations based on this version of
         IKE MUST set the Minor Version to 0.  They MUST ignore the
         minor version number of received messages.

      o  Exchange Type (1 octet) - Indicates the type of exchange being
         used.  This constrains the payloads sent in each message and
         orderings of messages in an exchange.
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                       Exchange Type            Value

                       RESERVED                 0-33
                       IKE_SA_INIT              34
                       IKE_AUTH                 35
                       CREATE_CHILD_SA          36
                       INFORMATIONAL            37
                       RESERVED TO IANA         38-239
                       Reserved for private use 240-255

      o  Flags (1 octet) - Indicates specific options that are set
         for the message.  Presence of options are indicated by the
         appropriate bit in the flags field being set.  The bits are
         defined LSB first, so bit 0 would be the least significant
         bit of the Flags octet.  In the description below, a bit
         being ’set’ means its value is ’1’, while ’cleared’ means
         its value is ’0’.

       --  X(reserved) (bits 0-2) - These bits MUST be cleared
           when sending and MUST be ignored on receipt.

       --  I(nitiator) (bit 3 of Flags) - This bit MUST be set in
           messages sent by the original initiator of the IKE_SA
           and MUST be cleared in messages sent by the original
           responder.  It is used by the recipient to determine
           which eight octets of the SPI were generated by the
           recipient.

       --  V(ersion) (bit 4 of Flags) - This bit indicates that
           the transmitter is capable of speaking a higher major
           version number of the protocol than the one indicated
           in the major version number field.  Implementations of
           IKEv2 must clear this bit when sending and MUST ignore
           it in incoming messages.

       --  R(esponse) (bit 5 of Flags) - This bit indicates that
           this message is a response to a message containing
           the same message ID.  This bit MUST be cleared in all
           request messages and MUST be set in all responses.
           An IKE endpoint MUST NOT generate a response to a
           message that is marked as being a response.

       --  X(reserved) (bits 6-7 of Flags) - These bits MUST be
           cleared when sending and MUST be ignored on receipt.
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      o  Message ID (4 octets) - Message identifier used to control
      retransmission of lost packets and matching of requests and
      responses.  It is essential to the security of the protocol
      because it is used to prevent message replay attacks.
      See sections 2.1 and 2.2.

      o  Length (4 octets) - Length of total message (header + payloads)
      in octets.

3.2.  Generic Payload Header

   Each IKE payload defined in sections 3.3 through 3.16 begins with a
   generic payload header, shown in Figure 5.  Figures for each payload
   below will include the generic payload header, but for brevity the
   description of each field will be omitted.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 5:  Generic Payload Header

   The Generic Payload Header fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.  This field provides a
      "chaining" capability whereby additional payloads can be added to
      a message by appending it to the end of the message and setting
      the "Next Payload" field of the preceding payload to indicate the
      new payload’s type.  An Encrypted payload, which must always be
      the last payload of a message, is an exception.  It contains data
      structures in the format of additional payloads.  In the header of
      an Encrypted payload, the Next Payload field is set to the payload
      type of the first contained payload (instead of 0).

      Payload Type Values

          Next Payload Type               Notation  Value

          No Next Payload                              0

          RESERVED                                   1-32
          Security Association             SA         33
          Key Exchange                     KE         34
          Identification - Initiator       IDi        35
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          Identification - Responder       IDr        36
          Certificate                      CERT       37
          Certificate Request              CERTREQ    38
          Authentication                   AUTH       39
          Nonce                            Ni, Nr     40
          Notify                           N          41
          Delete                           D          42
          Vendor ID                        V          43
          Traffic Selector - Initiator     TSi        44
          Traffic Selector - Responder     TSr        45
          Encrypted                        E          46
          Configuration                    CP         47
          Extensible Authentication        EAP        48
          RESERVED TO IANA                          49-127
          PRIVATE USE                              128-255

      Payload type values 1-32 should not be used so that there is no
      overlap with the code assignments for IKEv1.  Payload type values
      49-127 are reserved to IANA for future assignment in IKEv2 (see
      section 6).  Payload type values 128-255 are for private use among
      mutually consenting parties.

   o  Critical (1 bit) - MUST be set to zero if the sender wants the
      recipient to skip this payload if it does not understand the
      payload type code in the Next Payload field of the previous
      payload.  MUST be set to one if the sender wants the recipient to
      reject this entire message if it does not understand the payload
      type.  MUST be ignored by the recipient if the recipient
      understands the payload type code.  MUST be set to zero for
      payload types defined in this document.  Note that the critical
      bit applies to the current payload rather than the "next" payload
      whose type code appears in the first octet.  The reasoning behind
      not setting the critical bit for payloads defined in this document
      is that all implementations MUST understand all payload types
      defined in this document and therefore must ignore the Critical
      bit’s value.  Skipped payloads are expected to have valid Next
      Payload and Payload Length fields.

   o  RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
      receipt.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.
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3.3.  Security Association Payload

   The Security Association Payload, denoted SA in this memo, is used to
   negotiate attributes of a security association.  Assembly of Security
   Association Payloads requires great peace of mind.  An SA payload MAY
   contain multiple proposals.  If there is more than one, they MUST be
   ordered from most preferred to least preferred.  Each proposal may
   contain multiple IPsec protocols (where a protocol is IKE, ESP, or
   AH), each protocol MAY contain multiple transforms, and each
   transform MAY contain multiple attributes.  When parsing an SA, an
   implementation MUST check that the total Payload Length is consistent
   with the payload’s internal lengths and counts.  Proposals,
   Transforms, and Attributes each have their own variable length
   encodings.  They are nested such that the Payload Length of an SA
   includes the combined contents of the SA, Proposal, Transform, and
   Attribute information.  The length of a Proposal includes the lengths
   of all Transforms and Attributes it contains.  The length of a
   Transform includes the lengths of all Attributes it contains.

   The syntax of Security Associations, Proposals, Transforms, and
   Attributes is based on ISAKMP; however, the semantics are somewhat
   different.  The reason for the complexity and the hierarchy is to
   allow for multiple possible combinations of algorithms to be encoded
   in a single SA.  Sometimes there is a choice of multiple algorithms,
   whereas other times there is a combination of algorithms.  For
   example, an initiator might want to propose using (AH w/MD5 and ESP
   w/3DES) OR (ESP w/MD5 and 3DES).

   One of the reasons the semantics of the SA payload has changed from
   ISAKMP and IKEv1 is to make the encodings more compact in common
   cases.

   The Proposal structure contains within it a Proposal # and an IPsec
   protocol ID.  Each structure MUST have the same Proposal # as the
   previous one or be one (1) greater.  The first Proposal MUST have a
   Proposal # of one (1).  If two successive structures have the same
   Proposal number, it means that the proposal consists of the first
   structure AND the second.  So a proposal of AH AND ESP would have two
   proposal structures, one for AH and one for ESP and both would have
   Proposal #1.  A proposal of AH OR ESP would have two proposal
   structures, one for AH with Proposal #1 and one for ESP with Proposal
   #2.

   Each Proposal/Protocol structure is followed by one or more transform
   structures.  The number of different transforms is generally
   determined by the Protocol.  AH generally has a single transform: an
   integrity check algorithm.  ESP generally has two: an encryption
   algorithm and an integrity check algorithm.  IKE generally has four
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   transforms: a Diffie-Hellman group, an integrity check algorithm, a
   prf algorithm, and an encryption algorithm.  If an algorithm that
   combines encryption and integrity protection is proposed, it MUST be
   proposed as an encryption algorithm and an integrity protection
   algorithm MUST NOT be proposed.  For each Protocol, the set of
   permissible transforms is assigned transform ID numbers, which appear
   in the header of each transform.

   If there are multiple transforms with the same Transform Type, the
   proposal is an OR of those transforms.  If there are multiple
   Transforms with different Transform Types, the proposal is an AND of
   the different groups.  For example, to propose ESP with (3DES or
   IDEA) and (HMAC_MD5 or HMAC_SHA), the ESP proposal would contain two
   Transform Type 1 candidates (one for 3DES and one for IDEA) and two
   Transform Type 2 candidates (one for HMAC_MD5 and one for HMAC_SHA).
   This effectively proposes four combinations of algorithms.  If the
   initiator wanted to propose only a subset of those, for example (3DES
   and HMAC_MD5) or (IDEA and HMAC_SHA), there is no way to encode that
   as multiple transforms within a single Proposal.  Instead, the
   initiator would have to construct two different Proposals, each with
   two transforms.

   A given transform MAY have one or more Attributes.  Attributes are
   necessary when the transform can be used in more than one way, as
   when an encryption algorithm has a variable key size.  The transform
   would specify the algorithm and the attribute would specify the key
   size.  Most transforms do not have attributes.  A transform MUST NOT
   have multiple attributes of the same type.  To propose alternate
   values for an attribute (for example, multiple key sizes for the AES
   encryption algorithm), and implementation MUST include multiple
   Transforms with the same Transform Type each with a single Attribute.

   Note that the semantics of Transforms and Attributes are quite
   different from those in IKEv1.  In IKEv1, a single Transform carried
   multiple algorithms for a protocol with one carried in the Transform
   and the others carried in the Attributes.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                          <Proposals>                          ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 6:  Security Association Payload
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      o  Proposals (variable) - One or more proposal substructures.

      The payload type for the Security Association Payload is thirty
      three (33).

3.3.1.  Proposal Substructure

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! 0 (last) or 2 !   RESERVED    !         Proposal Length       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Proposal #    !  Protocol ID  !    SPI Size   !# of Transforms!
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ˜                        SPI (variable)                         ˜
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                        <Transforms>                           ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 7:  Proposal Substructure

      o  0 (last) or 2 (more) (1 octet) - Specifies whether this is the
         last Proposal Substructure in the SA.  This syntax is inherited
         from ISAKMP, but is unnecessary because the last Proposal could
         be identified from the length of the SA.  The value (2)
         corresponds to a Payload Type of Proposal in IKEv1, and the
         first 4 octets of the Proposal structure are designed to look
         somewhat like the header of a Payload.

      o  RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
         receipt.

      o  Proposal Length (2 octets) - Length of this proposal, including
         all transforms and attributes that follow.

      o  Proposal # (1 octet) - When a proposal is made, the first
         proposal in an SA payload MUST be #1, and subsequent proposals
         MUST either be the same as the previous proposal (indicating an
         AND of the two proposals) or one more than the previous
         proposal (indicating an OR of the two proposals).  When a
         proposal is accepted, all of the proposal numbers in the SA
         payload MUST be the same and MUST match the number on the
         proposal sent that was accepted.
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      o  Protocol ID (1 octet) - Specifies the IPsec protocol identifier
         for the current negotiation.  The defined values are:

          Protocol               Protocol ID
          RESERVED                0
          IKE                     1
          AH                      2
          ESP                     3
          RESERVED TO IANA        4-200
          PRIVATE USE             201-255

      o  SPI Size (1 octet) - For an initial IKE_SA negotiation, this
         field MUST be zero; the SPI is obtained from the outer header.
         During subsequent negotiations, it is equal to the size, in
         octets, of the SPI of the corresponding protocol (8 for IKE, 4
         for ESP and AH).

      o  # of Transforms (1 octet) - Specifies the number of transforms
         in this proposal.

      o  SPI (variable) - The sending entity’s SPI. Even if the SPI Size
         is not a multiple of 4 octets, there is no padding applied to
         the payload.  When the SPI Size field is zero, this field is
         not present in the Security Association payload.

      o  Transforms (variable) - One or more transform substructures.

3.3.2.  Transform Substructure

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! 0 (last) or 3 !   RESERVED    !        Transform Length       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !Transform Type !   RESERVED    !          Transform ID         !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                      Transform Attributes                     ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 8:  Transform Substructure

      o  0 (last) or 3 (more) (1 octet) - Specifies whether this is the
         last Transform Substructure in the Proposal.  This syntax is
         inherited from ISAKMP, but is unnecessary because the last
         Proposal could be identified from the length of the SA.  The
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         value (3) corresponds to a Payload Type of Transform in IKEv1,
         and the first 4 octets of the Transform structure are designed
         to look somewhat like the header of a Payload.

      o  RESERVED - MUST be sent as zero; MUST be ignored on receipt.

      o  Transform Length - The length (in octets) of the Transform
         Substructure including Header and Attributes.

      o  Transform Type (1 octet) - The type of transform being
         specified in this transform.  Different protocols support
         different transform types.  For some protocols, some of the
         transforms may be optional.  If a transform is optional and the
         initiator wishes to propose that the transform be omitted, no
         transform of the given type is included in the proposal.  If
         the initiator wishes to make use of the transform optional to
         the responder, it includes a transform substructure with
         transform ID = 0 as one of the options.

      o  Transform ID (2 octets) - The specific instance of the
         transform type being proposed.

   Transform Type Values

                                     Transform    Used In
                                        Type
          RESERVED                        0
          Encryption Algorithm (ENCR)     1  (IKE and ESP)
          Pseudo-random Function (PRF)    2  (IKE)
          Integrity Algorithm (INTEG)     3  (IKE, AH, optional in ESP)
          Diffie-Hellman Group (D-H)      4  (IKE, optional in AH & ESP)
          Extended Sequence Numbers (ESN) 5  (AH and ESP)
          RESERVED TO IANA                6-240
          PRIVATE USE                     241-255

   For Transform Type 1 (Encryption Algorithm), defined Transform IDs
   are:

          Name                     Number           Defined In
          RESERVED                    0
          ENCR_DES_IV64               1              (RFC1827)
          ENCR_DES                    2              (RFC2405), [DES]
          ENCR_3DES                   3              (RFC2451)
          ENCR_RC5                    4              (RFC2451)
          ENCR_IDEA                   5              (RFC2451), [IDEA]
          ENCR_CAST                   6              (RFC2451)
          ENCR_BLOWFISH               7              (RFC2451)
          ENCR_3IDEA                  8              (RFC2451)
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          ENCR_DES_IV32               9
          RESERVED                   10
          ENCR_NULL                  11              (RFC2410)
          ENCR_AES_CBC               12              (RFC3602)
          ENCR_AES_CTR               13              (RFC3664)

          values 14-1023 are reserved to IANA.  Values 1024-65535 are
          for private use among mutually consenting parties.

   For Transform Type 2 (Pseudo-random Function), defined Transform IDs
   are:

          Name                     Number               Defined In
          RESERVED                    0
          PRF_HMAC_MD5                1                 (RFC2104), [MD5]
          PRF_HMAC_SHA1               2                 (RFC2104), [SHA]
          PRF_HMAC_TIGER              3                 (RFC2104)
          PRF_AES128_XCBC             4                 (RFC3664)

          values 5-1023 are reserved to IANA.  Values 1024-65535 are for
          private use among mutually consenting parties.

   For Transform Type 3 (Integrity Algorithm), defined Transform IDs
   are:

          Name                     Number                 Defined In
          NONE                       0
          AUTH_HMAC_MD5_96           1                     (RFC2403)
          AUTH_HMAC_SHA1_96          2                     (RFC2404)
          AUTH_DES_MAC               3
          AUTH_KPDK_MD5              4                     (RFC1826)
          AUTH_AES_XCBC_96           5                     (RFC3566)

          values 6-1023 are reserved to IANA.  Values 1024-65535 are for
          private use among mutually consenting parties.

   For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs
   are:

          Name                                Number
          NONE                               0
          Defined in Appendix B              1 - 2
          RESERVED                           3 - 4
          Defined in [ADDGROUP]              5
          RESERVED TO IANA                   6 - 13
          Defined in [ADDGROUP]              14 - 18
          RESERVED TO IANA                   19 - 1023
          PRIVATE USE                        1024-65535
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   For Transform Type 5 (Extended Sequence Numbers), defined Transform
   IDs are:

          Name                                Number
          No Extended Sequence Numbers       0
          Extended Sequence Numbers          1
          RESERVED                           2 - 65535

3.3.3.  Valid Transform Types by Protocol

   The number and type of transforms that accompany an SA payload are
   dependent on the protocol in the SA itself.  An SA payload proposing
   the establishment of an SA has the following mandatory and optional
   transform types.  A compliant implementation MUST understand all
   mandatory and optional types for each protocol it supports (though it
   need not accept proposals with unacceptable suites).  A proposal MAY
   omit the optional types if the only value for them it will accept is
   NONE.

          Protocol  Mandatory Types        Optional Types
            IKE     ENCR, PRF, INTEG, D-H
            ESP     ENCR, ESN              INTEG, D-H
            AH      INTEG, ESN             D-H

3.3.4.  Mandatory Transform IDs

   The specification of suites that MUST and SHOULD be supported for
   interoperability has been removed from this document because they are
   likely to change more rapidly than this document evolves.

   An important lesson learned from IKEv1 is that no system should only
   implement the mandatory algorithms and expect them to be the best
   choice for all customers.  For example, at the time that this
   document was written, many IKEv1 implementers were starting to
   migrate to AES in Cipher Block Chaining (CBC) mode for Virtual
   Private Network (VPN) applications.  Many IPsec systems based on
   IKEv2 will implement AES, additional Diffie-Hellman groups, and
   additional hash algorithms, and some IPsec customers already require
   these algorithms in addition to the ones listed above.

   It is likely that IANA will add additional transforms in the future,
   and some users may want to use private suites, especially for IKE
   where implementations should be capable of supporting different
   parameters, up to certain size limits.  In support of this goal, all
   implementations of IKEv2 SHOULD include a management facility that
   allows specification (by a user or system administrator) of Diffie-
   Hellman (DH) parameters (the generator, modulus, and exponent lengths
   and values) for new DH groups.  Implementations SHOULD provide a
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   management interface via which these parameters and the associated
   transform IDs may be entered (by a user or system administrator), to
   enable negotiating such groups.

   All implementations of IKEv2 MUST include a management facility that
   enables a user or system administrator to specify the suites that are
   acceptable for use with IKE.  Upon receipt of a payload with a set of
   transform IDs, the implementation MUST compare the transmitted
   transform IDs against those locally configured via the management
   controls, to verify that the proposed suite is acceptable based on
   local policy.  The implementation MUST reject SA proposals that are
   not authorized by these IKE suite controls.  Note that cryptographic
   suites that MUST be implemented need not be configured as acceptable
   to local policy.

3.3.5.  Transform Attributes

   Each transform in a Security Association payload may include
   attributes that modify or complete the specification of the
   transform.  These attributes are type/value pairs and are defined
   below.  For example, if an encryption algorithm has a variable-length
   key, the key length to be used may be specified as an attribute.
   Attributes can have a value with a fixed two octet length or a
   variable-length value.  For the latter, the attribute is encoded as
   type/length/value.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !A!       Attribute Type        !    AF=0  Attribute Length     !
      !F!                             !    AF=1  Attribute Value      !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                   AF=0  Attribute Value                       !
      !                   AF=1  Not Transmitted                       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 9:  Data Attributes

      o  Attribute Type (2 octets) - Unique identifier for each type of
         attribute (see below).

         The most significant bit of this field is the Attribute Format
         bit (AF).  It indicates whether the data attributes follow the
         Type/Length/Value (TLV) format or a shortened Type/Value (TV)
         format.  If the AF bit is zero (0), then the Data Attributes
         are of the Type/Length/Value (TLV) form.  If the AF bit is a
         one (1), then the Data Attributes are of the Type/Value form.
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      o  Attribute Length (2 octets) - Length in octets of the Attribute
         Value.  When the AF bit is a one (1), the Attribute Value is
         only 2 octets and the Attribute Length field is not present.

      o  Attribute Value (variable length) - Value of the Attribute
         associated with the Attribute Type.  If the AF bit is a zero
         (0), this field has a variable length defined by the Attribute
         Length field.  If the AF bit is a one (1), the Attribute Value
         has a length of 2 octets.

   Note that only a single attribute type (Key Length) is defined, and
   it is fixed length.  The variable-length encoding specification is
   included only for future extensions.  The only algorithms defined in
   this document that accept attributes are the AES-based encryption,
   integrity, and pseudo-random functions, which require a single
   attribute specifying key width.

   Attributes described as basic MUST NOT be encoded using the
   variable-length encoding.  Variable-length attributes MUST NOT be
   encoded as basic even if their value can fit into two octets.  NOTE:
   This is a change from IKEv1, where increased flexibility may have
   simplified the composer of messages but certainly complicated the
   parser.

         Attribute Type                 Value        Attribute Format
      --------------------------------------------------------------
      RESERVED                           0-13 Key Length (in bits)
      14                 TV RESERVED                           15-17
      RESERVED TO IANA                   18-16383 PRIVATE USE
      16384-32767

   Values 0-13 and 15-17 were used in a similar context in IKEv1 and
   should not be assigned except to matching values.  Values 18-16383
   are reserved to IANA.  Values 16384-32767 are for private use among
   mutually consenting parties.

   - Key Length

      When using an Encryption Algorithm that has a variable-length key,
      this attribute specifies the key length in bits (MUST use network
      byte order).  This attribute MUST NOT be used when the specified
      Encryption Algorithm uses a fixed-length key.
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3.3.6.  Attribute Negotiation

   During security association negotiation, initiators present offers to
   responders.  Responders MUST select a single complete set of
   parameters from the offers (or reject all offers if none are
   acceptable).  If there are multiple proposals, the responder MUST
   choose a single proposal number and return all of the Proposal
   substructures with that Proposal number.  If there are multiple
   Transforms with the same type, the responder MUST choose a single
   one.  Any attributes of a selected transform MUST be returned
   unmodified.  The initiator of an exchange MUST check that the
   accepted offer is consistent with one of its proposals, and if not
   that response MUST be rejected.

   Negotiating Diffie-Hellman groups presents some special challenges.
   SA offers include proposed attributes and a Diffie-Hellman public
   number (KE) in the same message.  If in the initial exchange the
   initiator offers to use one of several Diffie-Hellman groups, it
   SHOULD pick the one the responder is most likely to accept and
   include a KE corresponding to that group.  If the guess turns out to
   be wrong, the responder will indicate the correct group in the
   response and the initiator SHOULD pick an element of that group for
   its KE value when retrying the first message.  It SHOULD, however,
   continue to propose its full supported set of groups in order to
   prevent a man-in-the-middle downgrade attack.

   Implementation Note:

      Certain negotiable attributes can have ranges or could have
      multiple acceptable values.  These include the key length of a
      variable key length symmetric cipher.  To further interoperability
      and to support upgrading endpoints independently, implementers of
      this protocol SHOULD accept values that they deem to supply
      greater security.  For instance, if a peer is configured to accept
      a variable-length cipher with a key length of X bits and is
      offered that cipher with a larger key length, the implementation
      SHOULD accept the offer if it supports use of the longer key.

   Support of this capability allows an implementation to express a
   concept of "at least" a certain level of security -- "a key length of
   _at least_ X bits for cipher Y".
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3.4.  Key Exchange Payload

   The Key Exchange Payload, denoted KE in this memo, is used to
   exchange Diffie-Hellman public numbers as part of a Diffie-Hellman
   key exchange.  The Key Exchange Payload consists of the IKE generic
   payload header followed by the Diffie-Hellman public value itself.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !          DH Group #           !           RESERVED            !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                       Key Exchange Data                       ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 10:  Key Exchange Payload Format

   A key exchange payload is constructed by copying one’s Diffie-Hellman
   public value into the "Key Exchange Data" portion of the payload.
   The length of the Diffie-Hellman public value MUST be equal to the
   length of the prime modulus over which the exponentiation was
   performed, prepending zero bits to the value if necessary.

   The DH Group # identifies the Diffie-Hellman group in which the Key
   Exchange Data was computed (see section 3.3.2).  If the selected
   proposal uses a different Diffie-Hellman group, the message MUST be
   rejected with a Notify payload of type INVALID_KE_PAYLOAD.

   The payload type for the Key Exchange payload is thirty four (34).

3.5.  Identification Payloads

   The Identification Payloads, denoted IDi and IDr in this memo, allow
   peers to assert an identity to one another.  This identity may be
   used for policy lookup, but does not necessarily have to match
   anything in the CERT payload; both fields may be used by an
   implementation to perform access control decisions.

   NOTE: In IKEv1, two ID payloads were used in each direction to hold
   Traffic Selector (TS) information for data passing over the SA.  In
   IKEv2, this information is carried in TS payloads (see section 3.13).
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   The Identification Payload consists of the IKE generic payload header
   followed by identification fields as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !   ID Type     !                 RESERVED                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                   Identification Data                         ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 11:  Identification Payload Format

   o  ID Type (1 octet) - Specifies the type of Identification being
      used.

   o  RESERVED - MUST be sent as zero; MUST be ignored on receipt.

   o  Identification Data (variable length) - Value, as indicated by the
      Identification Type.  The length of the Identification Data is
      computed from the size in the ID payload header.

   The payload types for the Identification Payload are thirty five (35)
   for IDi and thirty six (36) for IDr.

   The following table lists the assigned values for the Identification
   Type field, followed by a description of the Identification Data
   which follows:

      ID Type                           Value
      -------                           -----
      RESERVED                            0

      ID_IPV4_ADDR                        1

            A single four (4) octet IPv4 address.

      ID_FQDN                             2

            A fully-qualified domain name string.  An example of a
            ID_FQDN is, "example.com".  The string MUST not contain any
            terminators (e.g., NULL, CR, etc.).
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      ID_RFC822_ADDR                      3

            A fully-qualified RFC822 email address string, An example of
            a ID_RFC822_ADDR is, "jsmith@example.com".  The string MUST
            not contain any terminators.

      Reserved to IANA                    4

      ID_IPV6_ADDR                        5

            A single sixteen (16) octet IPv6 address.

      Reserved to IANA                    6 - 8

      ID_DER_ASN1_DN                      9

            The binary Distinguished Encoding Rules (DER) encoding of an
            ASN.1 X.500 Distinguished Name [X.501].

      ID_DER_ASN1_GN                      10

            The binary DER encoding of an ASN.1 X.500 GeneralName
            [X.509].

      ID_KEY_ID                           11

            An opaque octet stream which may be used to pass vendor-
            specific information necessary to do certain proprietary
            types of identification.

      Reserved to IANA                    12-200

      Reserved for private use            201-255

   Two implementations will interoperate only if each can generate a
   type of ID acceptable to the other.  To assure maximum
   interoperability, implementations MUST be configurable to send at
   least one of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and
   MUST be configurable to accept all of these types.  Implementations
   SHOULD be capable of generating and accepting all of these types.
   IPv6-capable implementations MUST additionally be configurable to
   accept ID_IPV6_ADDR.  IPv6-only implementations MAY be configurable
   to send only ID_IPV6_ADDR.
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3.6.  Certificate Payload

   The Certificate Payload, denoted CERT in this memo, provides a means
   to transport certificates or other authentication-related information
   via IKE.  Certificate payloads SHOULD be included in an exchange if
   certificates are available to the sender unless the peer has
   indicated an ability to retrieve this information from elsewhere
   using an HTTP_CERT_LOOKUP_SUPPORTED Notify payload.  Note that the
   term "Certificate Payload" is somewhat misleading, because not all
   authentication mechanisms use certificates and data other than
   certificates may be passed in this payload.

   The Certificate Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Cert Encoding !                                               !
      +-+-+-+-+-+-+-+-+                                               !
      ˜                       Certificate Data                        ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 12:  Certificate Payload Format

      o  Certificate Encoding (1 octet) - This field indicates the type
         of certificate or certificate-related information contained in
         the Certificate Data field.

           Certificate Encoding               Value
           --------------------               -----
           RESERVED                             0
           PKCS #7 wrapped X.509 certificate    1
           PGP Certificate                      2
           DNS Signed Key                       3
           X.509 Certificate - Signature        4
           Kerberos Token                       6
           Certificate Revocation List (CRL)    7
           Authority Revocation List (ARL)      8
           SPKI Certificate                     9
           X.509 Certificate - Attribute       10
           Raw RSA Key                         11
           Hash and URL of X.509 certificate   12
           Hash and URL of X.509 bundle        13
           RESERVED to IANA                  14 - 200
           PRIVATE USE                      201 - 255
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      o  Certificate Data (variable length) - Actual encoding of
         certificate data.  The type of certificate is indicated by the
         Certificate Encoding field.

   The payload type for the Certificate Payload is thirty seven (37).

   Specific syntax is for some of the certificate type codes above is
   not defined in this document.  The types whose syntax is defined in
   this document are:

      X.509 Certificate - Signature (4) contains a DER encoded X.509
      certificate whose public key is used to validate the sender’s AUTH
      payload.

      Certificate Revocation List (7) contains a DER encoded X.509
      certificate revocation list.

      Raw RSA Key (11) contains a PKCS #1 encoded RSA key (see [RSA] and
      [PKCS1]).

      Hash and URL encodings (12-13) allow IKE messages to remain short
      by replacing long data structures with a 20 octet SHA-1 hash (see
      [SHA]) of the replaced value followed by a variable-length URL
      that resolves to the DER encoded data structure itself.  This
      improves efficiency when the endpoints have certificate data
      cached and makes IKE less subject to denial of service attacks
      that become easier to mount when IKE messages are large enough to
      require IP fragmentation [KPS03].

      Use the following ASN.1 definition for an X.509 bundle:

            CertBundle
              { iso(1) identified-organization(3) dod(6) internet(1)
                security(5) mechanisms(5) pkix(7) id-mod(0)
                id-mod-cert-bundle(34) }

            DEFINITIONS EXPLICIT TAGS ::=
            BEGIN

            IMPORTS
              Certificate, CertificateList
              FROM PKIX1Explicit88
                 { iso(1) identified-organization(3) dod(6)
                   internet(1) security(5) mechanisms(5) pkix(7)
                   id-mod(0) id-pkix1-explicit(18) } ;
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           CertificateOrCRL ::= CHOICE {
             cert [0] Certificate,
             crl  [1] CertificateList }

           CertificateBundle ::= SEQUENCE OF CertificateOrCRL

           END

   Implementations MUST be capable of being configured to send and
   accept up to four X.509 certificates in support of authentication,
   and also MUST be capable of being configured to send and accept the
   first two Hash and URL formats (with HTTP URLs).  Implementations
   SHOULD be capable of being configured to send and accept Raw RSA
   keys.  If multiple certificates are sent, the first certificate MUST
   contain the public key used to sign the AUTH payload.  The other
   certificates may be sent in any order.

3.7.  Certificate Request Payload

   The Certificate Request Payload, denoted CERTREQ in this memo,
   provides a means to request preferred certificates via IKE and can
   appear in the IKE_INIT_SA response and/or the IKE_AUTH request.
   Certificate Request payloads MAY be included in an exchange when the
   sender needs to get the certificate of the receiver.  If multiple CAs
   are trusted and the cert encoding does not allow a list, then
   multiple Certificate Request payloads SHOULD be transmitted.

   The Certificate Request Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Cert Encoding !                                               !
      +-+-+-+-+-+-+-+-+                                               !
      ˜                    Certification Authority                    ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 13:  Certificate Request Payload Format

   o  Certificate Encoding (1 octet) - Contains an encoding of the type
      or format of certificate requested.  Values are listed in section
      3.6.
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   o  Certification Authority (variable length) - Contains an encoding
      of an acceptable certification authority for the type of
      certificate requested.

   The payload type for the Certificate Request Payload is thirty eight
   (38).

   The Certificate Encoding field has the same values as those defined
   in section 3.6. The Certification Authority field contains an
   indicator of trusted authorities for this certificate type.  The
   Certification Authority value is a concatenated list of SHA-1 hashes
   of the public keys of trusted Certification Authorities (CAs).  Each
   is encoded as the SHA-1 hash of the Subject Public Key Info element
   (see section 4.1.2.7 of [RFC3280]) from each Trust Anchor
   certificate.  The twenty-octet hashes are concatenated and included
   with no other formatting.

   Note that the term "Certificate Request" is somewhat misleading, in
   that values other than certificates are defined in a "Certificate"
   payload and requests for those values can be present in a Certificate
   Request Payload.  The syntax of the Certificate Request payload in
   such cases is not defined in this document.

   The Certificate Request Payload is processed by inspecting the "Cert
   Encoding" field to determine whether the processor has any
   certificates of this type.  If so, the "Certification Authority"
   field is inspected to determine if the processor has any certificates
   that can be validated up to one of the specified certification
   authorities.  This can be a chain of certificates.

   If an end-entity certificate exists that satisfies the criteria
   specified in the CERTREQ, a certificate or certificate chain SHOULD
   be sent back to the certificate requestor if the recipient of the
   CERTREQ:

   - is configured to use certificate authentication,

   - is allowed to send a CERT payload,

   - has matching CA trust policy governing the current negotiation, and

   - has at least one time-wise and usage appropriate end-entity
     certificate chaining to a CA provided in the CERTREQ.

   Certificate revocation checking must be considered during the
   chaining process used to select a certificate.  Note that even if two
   peers are configured to use two different CAs, cross-certification
   relationships should be supported by appropriate selection logic.
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   The intent is not to prevent communication through the strict
   adherence of selection of a certificate based on CERTREQ, when an
   alternate certificate could be selected by the sender that would
   still enable the recipient to successfully validate and trust it
   through trust conveyed by cross-certification, CRLs, or other out-
   of-band configured means.  Thus, the processing of a CERTREQ should
   be seen as a suggestion for a certificate to select, not a mandated
   one.  If no certificates exist, then the CERTREQ is ignored.  This is
   not an error condition of the protocol.  There may be cases where
   there is a preferred CA sent in the CERTREQ, but an alternate might
   be acceptable (perhaps after prompting a human operator).

3.8.  Authentication Payload

   The Authentication Payload, denoted AUTH in this memo, contains data
   used for authentication purposes.  The syntax of the Authentication
   data varies according to the Auth Method as specified below.

   The Authentication Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Auth Method   !                RESERVED                       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                      Authentication Data                      ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 14:  Authentication Payload Format

   o  Auth Method (1 octet) - Specifies the method of authentication
      used.  Values defined are:

        RSA Digital Signature (1) - Computed as specified in section
        2.15 using an RSA private key over a PKCS#1 padded hash (see
        [RSA] and [PKCS1]).

        Shared Key Message Integrity Code (2) - Computed as specified in
        section 2.15 using the shared key associated with the identity
        in the ID payload and the negotiated prf function

        DSS Digital Signature (3) - Computed as specified in section
        2.15 using a DSS private key (see [DSS]) over a SHA-1 hash.
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        The values 0 and 4-200 are reserved to IANA.  The values 201-255
        are available for private use.

   o  Authentication Data (variable length) - see section 2.15.

   The payload type for the Authentication Payload is thirty nine (39).

3.9.  Nonce Payload

   The Nonce Payload, denoted Ni and Nr in this memo for the initiator’s
   and responder’s nonce respectively, contains random data used to
   guarantee liveness during an exchange and protect against replay
   attacks.

   The Nonce Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                            Nonce Data                         ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 15:  Nonce Payload Format

   o  Nonce Data (variable length) - Contains the random data generated
      by the transmitting entity.

   The payload type for the Nonce Payload is forty (40).

   The size of a Nonce MUST be between 16 and 256 octets inclusive.
   Nonce values MUST NOT be reused.

3.10.  Notify Payload

   The Notify Payload, denoted N in this document, is used to transmit
   informational data, such as error conditions and state transitions,
   to an IKE peer.  A Notify Payload may appear in a response message
   (usually specifying why a request was rejected), in an INFORMATIONAL
   Exchange (to report an error not in an IKE request), or in any other
   message to indicate sender capabilities or to modify the meaning of
   the request.
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   The Notify Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !  Protocol ID  !   SPI Size    !      Notify Message Type      !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                Security Parameter Index (SPI)                 ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                       Notification Data                       ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 16:  Notify Payload Format

   o  Protocol ID (1 octet) - If this notification concerns an existing
      SA, this field indicates the type of that SA.  For IKE_SA
      notifications, this field MUST be one (1).  For notifications
      concerning IPsec SAs this field MUST contain either (2) to
      indicate AH or (3) to indicate ESP.  For notifications that do not
      relate to an existing SA, this field MUST be sent as zero and MUST
      be ignored on receipt.  All other values for this field are
      reserved to IANA for future assignment.

   o  SPI Size (1 octet) - Length in octets of the SPI as defined by the
      IPsec protocol ID or zero if no SPI is applicable.  For a
      notification concerning the IKE_SA, the SPI Size MUST be zero.

   o  Notify Message Type (2 octets) - Specifies the type of
      notification message.

   o  SPI (variable length) - Security Parameter Index.

   o  Notification Data (variable length) - Informational or error data
      transmitted in addition to the Notify Message Type.  Values for
      this field are type specific (see below).

   The payload type for the Notify Payload is forty one (41).
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3.10.1.  Notify Message Types

   Notification information can be error messages specifying why an SA
   could not be established.  It can also be status data that a process
   managing an SA database wishes to communicate with a peer process.
   The table below lists the Notification messages and their
   corresponding values.  The number of different error statuses was
   greatly reduced from IKEv1 both for simplification and to avoid
   giving configuration information to probers.

   Types in the range 0 - 16383 are intended for reporting errors.  An
   implementation receiving a Notify payload with one of these types
   that it does not recognize in a response MUST assume that the
   corresponding request has failed entirely.  Unrecognized error types
   in a request and status types in a request or response MUST be
   ignored except that they SHOULD be logged.

   Notify payloads with status types MAY be added to any message and
   MUST be ignored if not recognized.  They are intended to indicate
   capabilities, and as part of SA negotiation are used to negotiate
   non-cryptographic parameters.

        NOTIFY MESSAGES - ERROR TYPES           Value
        -----------------------------           -----
        RESERVED                                  0

        UNSUPPORTED_CRITICAL_PAYLOAD              1

            Sent if the payload has the "critical" bit set and the
            payload type is not recognized.  Notification Data contains
            the one-octet payload type.

        INVALID_IKE_SPI                           4

            Indicates an IKE message was received with an unrecognized
            destination SPI.  This usually indicates that the recipient
            has rebooted and forgotten the existence of an IKE_SA.

        INVALID_MAJOR_VERSION                     5

            Indicates the recipient cannot handle the version of IKE
            specified in the header.  The closest version number that
            the recipient can support will be in the reply header.

        INVALID_SYNTAX                            7

            Indicates the IKE message that was received was invalid
            because some type, length, or value was out of range or
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            because the request was rejected for policy reasons.  To
            avoid a denial of service attack using forged messages, this
            status may only be returned for and in an encrypted packet
            if the message ID and cryptographic checksum were valid.  To
            avoid leaking information to someone probing a node, this
            status MUST be sent in response to any error not covered by
            one of the other status types.  To aid debugging, more
            detailed error information SHOULD be written to a console or
            log.

        INVALID_MESSAGE_ID                        9

            Sent when an IKE message ID outside the supported window is
            received.  This Notify MUST NOT be sent in a response; the
            invalid request MUST NOT be acknowledged.  Instead, inform
            the other side by initiating an INFORMATIONAL exchange with
            Notification data containing the four octet invalid message
            ID.  Sending this notification is optional, and
            notifications of this type MUST be rate limited.

        INVALID_SPI                              11

            MAY be sent in an IKE INFORMATIONAL exchange when a node
            receives an ESP or AH packet with an invalid SPI.  The
            Notification Data contains the SPI of the invalid packet.
            This usually indicates a node has rebooted and forgotten an
            SA.  If this Informational Message is sent outside the
            context of an IKE_SA, it should be used by the recipient
            only as a "hint" that something might be wrong (because it
            could easily be forged).

        NO_PROPOSAL_CHOSEN                       14

            None of the proposed crypto suites was acceptable.

        INVALID_KE_PAYLOAD                       17

            The D-H Group # field in the KE payload is not the group #
            selected by the responder for this exchange.  There are two
            octets of data associated with this notification: the
            accepted D-H Group # in big endian order.

        AUTHENTICATION_FAILED                    24

            Sent in the response to an IKE_AUTH message when for some
            reason the authentication failed.  There is no associated
            data.
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        SINGLE_PAIR_REQUIRED                     34

        This error indicates that a CREATE_CHILD_SA request is
        unacceptable because its sender is only willing to accept
        traffic selectors specifying a single pair of addresses.  The
        requestor is expected to respond by requesting an SA for only
        the specific traffic it is trying to forward.

        NO_ADDITIONAL_SAS                        35

        This error indicates that a CREATE_CHILD_SA request is
        unacceptable because the responder is unwilling to accept any
        more CHILD_SAs on this IKE_SA.  Some minimal implementations may
        only accept a single CHILD_SA setup in the context of an initial
        IKE exchange and reject any subsequent attempts to add more.

        INTERNAL_ADDRESS_FAILURE                 36

        Indicates an error assigning an internal address (i.e.,
        INTERNAL_IP4_ADDRESS or INTERNAL_IP6_ADDRESS) during the
        processing of a Configuration Payload by a responder.  If this
        error is generated within an IKE_AUTH exchange, no CHILD_SA will
        be created.

        FAILED_CP_REQUIRED                       37

        Sent by responder in the case where CP(CFG_REQUEST) was expected
        but not received, and so is a conflict with locally configured
        policy.  There is no associated data.

        TS_UNACCEPTABLE                          38

        Indicates that none of the addresses/protocols/ports in the
        supplied traffic selectors is acceptable.

        INVALID_SELECTORS                        39

            MAY be sent in an IKE INFORMATIONAL exchange when a node
            receives an ESP or AH packet whose selectors do not match
            those of the SA on which it was delivered (and that caused
            the packet to be dropped).  The Notification Data contains
            the start of the offending packet (as in ICMP messages) and
            the SPI field of the notification is set to match the SPI of
            the IPsec SA.

        RESERVED TO IANA - Error types         40 - 8191

        Private Use - Errors                8192 - 16383
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        NOTIFY MESSAGES - STATUS TYPES           Value
        ------------------------------           -----

        INITIAL_CONTACT                          16384

            This notification asserts that this IKE_SA is the only
            IKE_SA currently active between the authenticated
            identities.  It MAY be sent when an IKE_SA is established
            after a crash, and the recipient MAY use this information to
            delete any other IKE_SAs it has to the same authenticated
            identity without waiting for a timeout.  This notification
            MUST NOT be sent by an entity that may be replicated (e.g.,
            a roaming user’s credentials where the user is allowed to
            connect to the corporate firewall from two remote systems at
            the same time).

        SET_WINDOW_SIZE                          16385

            This notification asserts that the sending endpoint is
            capable of keeping state for multiple outstanding exchanges,
            permitting the recipient to send multiple requests before
            getting a response to the first.  The data associated with a
            SET_WINDOW_SIZE notification MUST be 4 octets long and
            contain the big endian representation of the number of
            messages the sender promises to keep.  Window size is always
            one until the initial exchanges complete.

        ADDITIONAL_TS_POSSIBLE                   16386

            This notification asserts that the sending endpoint narrowed
            the proposed traffic selectors but that other traffic
            selectors would also have been acceptable, though only in a
            separate SA (see section 2.9).  There is no data associated
            with this Notify type.  It may be sent only as an additional
            payload in a message including accepted TSs.

        IPCOMP_SUPPORTED                         16387

            This notification may be included only in a message
            containing an SA payload negotiating a CHILD_SA and
            indicates a willingness by its sender to use IPComp on this
            SA.  The data associated with this notification includes a
            two-octet IPComp CPI followed by a one-octet transform ID
            optionally followed by attributes whose length and format
            are defined by that transform ID.  A message proposing an SA
            may contain multiple IPCOMP_SUPPORTED notifications to
            indicate multiple supported algorithms.  A message accepting
            an SA may contain at most one.
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            The transform IDs currently defined are:

                 NAME         NUMBER  DEFINED IN
                 -----------  ------  -----------
                 RESERVED       0
                 IPCOMP_OUI     1
                 IPCOMP_DEFLATE 2     RFC 2394
                 IPCOMP_LZS     3     RFC 2395
                 IPCOMP_LZJH    4     RFC 3051

                 values 5-240 are reserved to IANA.  Values 241-255 are
                 for private use among mutually consenting parties.

        NAT_DETECTION_SOURCE_IP                  16388

            This notification is used by its recipient to determine
            whether the source is behind a NAT box.  The data associated
            with this notification is a SHA-1 digest of the SPIs (in the
            order they appear in the header), IP address, and port on
            which this packet was sent.  There MAY be multiple Notify
            payloads of this type in a message if the sender does not
            know which of several network attachments will be used to
            send the packet.  The recipient of this notification MAY
            compare the supplied value to a SHA-1 hash of the SPIs,
            source IP address, and port, and if they don’t match it
            SHOULD enable NAT traversal (see section 2.23).
            Alternately, it MAY reject the connection attempt if NAT
            traversal is not supported.

        NAT_DETECTION_DESTINATION_IP             16389

            This notification is used by its recipient to determine
            whether it is behind a NAT box.  The data associated with
            this notification is a SHA-1 digest of the SPIs (in the
            order they appear in the header), IP address, and port to
            which this packet was sent.  The recipient of this
            notification MAY compare the supplied value to a hash of the
            SPIs, destination IP address, and port, and if they don’t
            match it SHOULD invoke NAT traversal (see section 2.23).  If
            they don’t match, it means that this end is behind a NAT and
            this end SHOULD start sending keepalive packets as defined
            in [Hutt05].  Alternately, it MAY reject the connection
            attempt if NAT traversal is not supported.
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        COOKIE                                   16390

            This notification MAY be included in an IKE_SA_INIT
            response.  It indicates that the request should be retried
            with a copy of this notification as the first payload.  This
            notification MUST be included in an IKE_SA_INIT request
            retry if a COOKIE notification was included in the initial
            response.  The data associated with this notification MUST
            be between 1 and 64 octets in length (inclusive).

        USE_TRANSPORT_MODE                       16391

            This notification MAY be included in a request message that
            also includes an SA payload requesting a CHILD_SA.  It
            requests that the CHILD_SA use transport mode rather than
            tunnel mode for the SA created.  If the request is accepted,
            the response MUST also include a notification of type
            USE_TRANSPORT_MODE.  If the responder declines the request,
            the CHILD_SA will be established in tunnel mode.  If this is
            unacceptable to the initiator, the initiator MUST delete the
            SA.  Note: Except when using this option to negotiate
            transport mode, all CHILD_SAs will use tunnel mode.

            Note: The ECN decapsulation modifications specified in
            [RFC4301] MUST be performed for every tunnel mode SA created
            by IKEv2.

        HTTP_CERT_LOOKUP_SUPPORTED               16392

            This notification MAY be included in any message that can
            include a CERTREQ payload and indicates that the sender is
            capable of looking up certificates based on an HTTP-based
            URL (and hence presumably would prefer to receive
            certificate specifications in that format).

        REKEY_SA                                 16393

            This notification MUST be included in a CREATE_CHILD_SA
            exchange if the purpose of the exchange is to replace an
            existing ESP or AH SA.  The SPI field identifies the SA
            being rekeyed.  There is no data.

        ESP_TFC_PADDING_NOT_SUPPORTED            16394

            This notification asserts that the sending endpoint will NOT
            accept packets that contain Flow Confidentiality (TFC)
            padding.
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        NON_FIRST_FRAGMENTS_ALSO                 16395

            Used for fragmentation control.  See [RFC4301] for
            explanation.

        RESERVED TO IANA - STATUS TYPES      16396 - 40959

        Private Use - STATUS TYPES           40960 - 65535

3.11.  Delete Payload

   The Delete Payload, denoted D in this memo, contains a protocol-
   specific security association identifier that the sender has removed
   from its security association database and is, therefore, no longer
   valid.  Figure 17 shows the format of the Delete Payload.  It is
   possible to send multiple SPIs in a Delete payload; however, each SPI
   MUST be for the same protocol.  Mixing of protocol identifiers MUST
   NOT be performed in a Delete payload.  It is permitted, however, to
   include multiple Delete payloads in a single INFORMATIONAL exchange
   where each Delete payload lists SPIs for a different protocol.

   Deletion of the IKE_SA is indicated by a protocol ID of 1 (IKE) but
   no SPIs.  Deletion of a CHILD_SA, such as ESP or AH, will contain the
   IPsec protocol ID of that protocol (2 for AH, 3 for ESP), and the SPI
   is the SPI the sending endpoint would expect in inbound ESP or AH
   packets.

   The Delete Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Protocol ID   !   SPI Size    !           # of SPIs           !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜               Security Parameter Index(es) (SPI)              ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 17:  Delete Payload Format

   o  Protocol ID (1 octet) - Must be 1 for an IKE_SA, 2 for AH, or 3
      for ESP.
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   o  SPI Size (1 octet) - Length in octets of the SPI as defined by the
      protocol ID.  It MUST be zero for IKE (SPI is in message header)
      or four for AH and ESP.

   o  # of SPIs (2 octets) - The number of SPIs contained in the Delete
      payload.  The size of each SPI is defined by the SPI Size field.

   o  Security Parameter Index(es) (variable length) - Identifies the
      specific security association(s) to delete.  The length of this
      field is determined by the SPI Size and # of SPIs fields.

   The payload type for the Delete Payload is forty two (42).

3.12.  Vendor ID Payload

   The Vendor ID Payload, denoted V in this memo, contains a vendor
   defined constant.  The constant is used by vendors to identify and
   recognize remote instances of their implementations.  This mechanism
   allows a vendor to experiment with new features while maintaining
   backward compatibility.

   A Vendor ID payload MAY announce that the sender is capable to
   accepting certain extensions to the protocol, or it MAY simply
   identify the implementation as an aid in debugging.  A Vendor ID
   payload MUST NOT change the interpretation of any information defined
   in this specification (i.e., the critical bit MUST be set to 0).
   Multiple Vendor ID payloads MAY be sent.  An implementation is NOT
   REQUIRED to send any Vendor ID payload at all.

   A Vendor ID payload may be sent as part of any message.  Reception of
   a familiar Vendor ID payload allows an implementation to make use of
   Private USE numbers described throughout this memo -- private
   payloads, private exchanges, private notifications, etc.  Unfamiliar
   Vendor IDs MUST be ignored.

   Writers of Internet-Drafts who wish to extend this protocol MUST
   define a Vendor ID payload to announce the ability to implement the
   extension in the Internet-Draft.  It is expected that Internet-Drafts
   that gain acceptance and are standardized will be given "magic
   numbers" out of the Future Use range by IANA, and the requirement to
   use a Vendor ID will go away.
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   The Vendor ID Payload fields are defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                        Vendor ID (VID)                        ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 18:  Vendor ID Payload Format

   o  Vendor ID (variable length) - It is the responsibility of the
      person choosing the Vendor ID to assure its uniqueness in spite of
      the absence of any central registry for IDs.  Good practice is to
      include a company name, a person name, or some such.  If you want
      to show off, you might include the latitude and longitude and time
      where you were when you chose the ID and some random input.  A
      message digest of a long unique string is preferable to the long
      unique string itself.

   The payload type for the Vendor ID Payload is forty three (43).

3.13.  Traffic Selector Payload

   The Traffic Selector Payload, denoted TS in this memo, allows peers
   to identify packet flows for processing by IPsec security services.
   The Traffic Selector Payload consists of the IKE generic payload
   header followed by individual traffic selectors as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Number of TSs !                 RESERVED                      !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                       <Traffic Selectors>                     ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 19:  Traffic Selectors Payload Format

   o  Number of TSs (1 octet) - Number of traffic selectors being
      provided.
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   o  RESERVED - This field MUST be sent as zero and MUST be ignored on
      receipt.

   o  Traffic Selectors (variable length) - One or more individual
      traffic selectors.

   The length of the Traffic Selector payload includes the TS header and
   all the traffic selectors.

   The payload type for the Traffic Selector payload is forty four (44)
   for addresses at the initiator’s end of the SA and forty five (45)
   for addresses at the responder’s end.

3.13.1.  Traffic Selector

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !   TS Type     !IP Protocol ID*|       Selector Length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Start Port*         |           End Port*           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                         Starting Address*                     ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                         Ending Address*                       ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 20: Traffic Selector

   * Note: All fields other than TS Type and Selector Length depend on
   the TS Type.  The fields shown are for TS Types 7 and 8, the only two
   values currently defined.

   o  TS Type (one octet) - Specifies the type of traffic selector.

   o  IP protocol ID (1 octet) - Value specifying an associated IP
      protocol ID (e.g., UDP/TCP/ICMP).  A value of zero means that the
      protocol ID is not relevant to this traffic selector -- the SA can
      carry all protocols.

   o  Selector Length - Specifies the length of this Traffic Selector
      Substructure including the header.
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   o  Start Port (2 octets) - Value specifying the smallest port number
      allowed by this Traffic Selector.  For protocols for which port is
      undefined, or if all ports are allowed, this field MUST be zero.
      For the ICMP protocol, the two one-octet fields Type and Code are
      treated as a single 16-bit integer (with Type in the most
      significant eight bits and Code in the least significant eight
      bits) port number for the purposes of filtering based on this
      field.

   o  End Port (2 octets) - Value specifying the largest port number
      allowed by this Traffic Selector.  For protocols for which port is
      undefined, or if all ports are allowed, this field MUST be 65535.
      For the ICMP protocol, the two one-octet fields Type and Code are
      treated as a single 16-bit integer (with Type in the most
      significant eight bits and Code in the least significant eight
      bits) port number for the purposed of filtering based on this
      field.

   o  Starting Address - The smallest address included in this Traffic
      Selector (length determined by TS type).

   o  Ending Address - The largest address included in this Traffic
      Selector (length determined by TS type).

   Systems that are complying with [RFC4301] that wish to indicate "ANY"
   ports MUST set the start port to 0 and the end port to 65535; note
   that according to [RFC4301], "ANY" includes "OPAQUE".  Systems
   working with [RFC4301] that wish to indicate "OPAQUE" ports, but not
   "ANY" ports, MUST set the start port to 65535 and the end port to 0.

   The following table lists the assigned values for the Traffic
   Selector Type field and the corresponding Address Selector Data.

      TS Type                           Value
      -------                           -----
      RESERVED                           0-6

      TS_IPV4_ADDR_RANGE                  7

            A range of IPv4 addresses, represented by two four-octet
            values.  The first value is the beginning IPv4 address
            (inclusive) and the second value is the ending IPv4 address
            (inclusive).  All addresses falling between the two
            specified addresses are considered to be within the list.
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      TS_IPV6_ADDR_RANGE                  8

            A range of IPv6 addresses, represented by two sixteen-octet
            values.  The first value is the beginning IPv6 address
            (inclusive) and the second value is the ending IPv6 address
            (inclusive).  All addresses falling between the two
            specified addresses are considered to be within the list.

      RESERVED TO IANA                    9-240
      PRIVATE USE                         241-255

3.14.  Encrypted Payload

   The Encrypted Payload, denoted SK{...} or E in this memo, contains
   other payloads in encrypted form.  The Encrypted Payload, if present
   in a message, MUST be the last payload in the message.  Often, it is
   the only payload in the message.

   The algorithms for encryption and integrity protection are negotiated
   during IKE_SA setup, and the keys are computed as specified in
   sections 2.14 and 2.18.

   The encryption and integrity protection algorithms are modeled after
   the ESP algorithms described in RFCs 2104 [KBC96], 4303 [RFC4303],
   and 2451 [ESPCBC].  This document completely specifies the
   cryptographic processing of IKE data, but those documents should be
   consulted for design rationale.  We require a block cipher with a
   fixed block size and an integrity check algorithm that computes a
   fixed-length checksum over a variable size message.

   The payload type for an Encrypted payload is forty six (46).  The
   Encrypted Payload consists of the IKE generic payload header followed
   by individual fields as follows:
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                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                     Initialization Vector                     !
      !         (length is block size for encryption algorithm)       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ˜                    Encrypted IKE Payloads                     ˜
      +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !               !             Padding (0-255 octets)            !
      +-+-+-+-+-+-+-+-+                               +-+-+-+-+-+-+-+-+
      !                                               !  Pad Length   !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ˜                    Integrity Checksum Data                    ˜
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 21:  Encrypted Payload Format

   o  Next Payload - The payload type of the first embedded payload.
      Note that this is an exception in the standard header format,
      since the Encrypted payload is the last payload in the message and
      therefore the Next Payload field would normally be zero.  But
      because the content of this payload is embedded payloads and there
      was no natural place to put the type of the first one, that type
      is placed here.

   o  Payload Length - Includes the lengths of the header, IV, Encrypted
      IKE Payloads, Padding, Pad Length, and Integrity Checksum Data.

   o  Initialization Vector - A randomly chosen value whose length is
      equal to the block length of the underlying encryption algorithm.
      Recipients MUST accept any value.  Senders SHOULD either pick this
      value pseudo-randomly and independently for each message or use
      the final ciphertext block of the previous message sent.  Senders
      MUST NOT use the same value for each message, use a sequence of
      values with low hamming distance (e.g., a sequence number), or use
      ciphertext from a received message.

   o  IKE Payloads are as specified earlier in this section. This field
      is encrypted with the negotiated cipher.

   o  Padding MAY contain any value chosen by the sender, and MUST have
      a length that makes the combination of the Payloads, the Padding,
      and the Pad Length to be a multiple of the encryption block size.
      This field is encrypted with the negotiated cipher.
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   o  Pad Length is the length of the Padding field. The sender SHOULD
      set the Pad Length to the minimum value that makes the combination
      of the Payloads, the Padding, and the Pad Length a multiple of the
      block size, but the recipient MUST accept any length that results
      in proper alignment.  This field is encrypted with the negotiated
      cipher.

   o  Integrity Checksum Data is the cryptographic checksum of the
      entire message starting with the Fixed IKE Header through the Pad
      Length.  The checksum MUST be computed over the encrypted message.
      Its length is determined by the integrity algorithm negotiated.

3.15.  Configuration Payload

   The Configuration payload, denoted CP in this document, is used to
   exchange configuration information between IKE peers.  The exchange
   is for an IRAC to request an internal IP address from an IRAS and to
   exchange other information of the sort that one would acquire with
   Dynamic Host Configuration Protocol (DHCP) if the IRAC were directly
   connected to a LAN.

   Configuration payloads are of type CFG_REQUEST/CFG_REPLY or
   CFG_SET/CFG_ACK (see CFG Type in the payload description below).
   CFG_REQUEST and CFG_SET payloads may optionally be added to any IKE
   request.  The IKE response MUST include either a corresponding
   CFG_REPLY or CFG_ACK or a Notify payload with an error type
   indicating why the request could not be honored.  An exception is
   that a minimal implementation MAY ignore all CFG_REQUEST and CFG_SET
   payloads, so a response message without a corresponding CFG_REPLY or
   CFG_ACK MUST be accepted as an indication that the request was not
   supported.

   "CFG_REQUEST/CFG_REPLY" allows an IKE endpoint to request information
   from its peer.  If an attribute in the CFG_REQUEST Configuration
   Payload is not zero-length, it is taken as a suggestion for that
   attribute.  The CFG_REPLY Configuration Payload MAY return that
   value, or a new one.  It MAY also add new attributes and not include
   some requested ones.  Requestors MUST ignore returned attributes that
   they do not recognize.

   Some attributes MAY be multi-valued, in which case multiple attribute
   values of the same type are sent and/or returned.  Generally, all
   values of an attribute are returned when the attribute is requested.
   For some attributes (in this version of the specification only
   internal addresses), multiple requests indicates a request that
   multiple values be assigned.  For these attributes, the number of
   values returned SHOULD NOT exceed the number requested.
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   If the data type requested in a CFG_REQUEST is not recognized or not
   supported, the responder MUST NOT return an error type but rather
   MUST either send a CFG_REPLY that MAY be empty or a reply not
   containing a CFG_REPLY payload at all.  Error returns are reserved
   for cases where the request is recognized but cannot be performed as
   requested or the request is badly formatted.

   "CFG_SET/CFG_ACK" allows an IKE endpoint to push configuration data
   to its peer.  In this case, the CFG_SET Configuration Payload
   contains attributes the initiator wants its peer to alter.  The
   responder MUST return a Configuration Payload if it accepted any of
   the configuration data and it MUST contain the attributes that the
   responder accepted with zero-length data.  Those attributes that it
   did not accept MUST NOT be in the CFG_ACK Configuration Payload.  If
   no attributes were accepted, the responder MUST return either an
   empty CFG_ACK payload or a response message without a CFG_ACK
   payload.  There are currently no defined uses for the CFG_SET/CFG_ACK
   exchange, though they may be used in connection with extensions based
   on Vendor IDs.  An minimal implementation of this specification MAY
   ignore CFG_SET payloads.

   Extensions via the CP payload SHOULD NOT be used for general purpose
   management.  Its main intent is to provide a bootstrap mechanism to
   exchange information within IPsec from IRAS to IRAC.  While it MAY be
   useful to use such a method to exchange information between some
   Security Gateways (SGW) or small networks, existing management
   protocols such as DHCP [DHCP], RADIUS [RADIUS], SNMP, or LDAP [LDAP]
   should be preferred for enterprise management as well as subsequent
   information exchanges.

   The Configuration Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C! RESERVED    !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !   CFG Type    !                    RESERVED                   !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ˜                   Configuration Attributes                    ˜
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 22:  Configuration Payload Format

   The payload type for the Configuration Payload is forty seven (47).
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   o  CFG Type (1 octet) - The type of exchange represented by the
      Configuration Attributes.

             CFG Type       Value
             ===========    =====
             RESERVED         0
             CFG_REQUEST      1
             CFG_REPLY        2
             CFG_SET          3
             CFG_ACK          4

      values 5-127 are reserved to IANA.  Values 128-255 are for private
      use among mutually consenting parties.

   o  RESERVED (3 octets)  - MUST be sent as zero; MUST be ignored on
      receipt.

   o  Configuration Attributes (variable length) - These are type length
      values specific to the Configuration Payload and are defined
      below.  There may be zero or more Configuration Attributes in this
      payload.

3.15.1.  Configuration Attributes

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !R|         Attribute Type      !            Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ˜                             Value                             ˜
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 23:  Configuration Attribute Format

   o  Reserved (1 bit) - This bit MUST be set to zero and MUST be
      ignored on receipt.

   o  Attribute Type (15 bits) - A unique identifier for each of the
      Configuration Attribute Types.

   o  Length (2 octets) - Length in octets of Value.

   o  Value (0 or more octets) - The variable-length value of this
      Configuration Attribute.
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   The following attribute types have been defined:

                                      Multi-
        Attribute Type          Value Valued Length
        ======================= ===== ====== ==================
         RESERVED                 0
         INTERNAL_IP4_ADDRESS     1    YES*  0 or 4 octets
         INTERNAL_IP4_NETMASK     2    NO    0 or 4 octets
         INTERNAL_IP4_DNS         3    YES   0 or 4 octets
         INTERNAL_IP4_NBNS        4    YES   0 or 4 octets
         INTERNAL_ADDRESS_EXPIRY  5    NO    0 or 4 octets
         INTERNAL_IP4_DHCP        6    YES   0 or 4 octets
         APPLICATION_VERSION      7    NO    0 or more
         INTERNAL_IP6_ADDRESS     8    YES*  0 or 17 octets
         RESERVED                 9
         INTERNAL_IP6_DNS        10    YES   0 or 16 octets
         INTERNAL_IP6_NBNS       11    YES   0 or 16 octets
         INTERNAL_IP6_DHCP       12    YES   0 or 16 octets
         INTERNAL_IP4_SUBNET     13    YES   0 or 8 octets
         SUPPORTED_ATTRIBUTES    14    NO    Multiple of 2
         INTERNAL_IP6_SUBNET     15    YES   17 octets

      * These attributes may be multi-valued on return only if multiple
      values were requested.

      Types 16-16383 are reserved to IANA.  Values 16384-32767 are for
      private use among mutually consenting parties.

      o  INTERNAL_IP4_ADDRESS, INTERNAL_IP6_ADDRESS - An address on the
         internal network, sometimes called a red node address or
         private address and MAY be a private address on the Internet.
         In a request message, the address specified is a requested
         address (or zero if no specific address is requested).  If a
         specific address is requested, it likely indicates that a
         previous connection existed with this address and the requestor
         would like to reuse that address.  With IPv6, a requestor MAY
         supply the low-order address bytes it wants to use.  Multiple
         internal addresses MAY be requested by requesting multiple
         internal address attributes.  The responder MAY only send up to
         the number of addresses requested.  The INTERNAL_IP6_ADDRESS is
         made up of two fields: the first is a sixteen-octet IPv6
         address and the second is a one-octet prefix-length as defined
         in [ADDRIPV6].

         The requested address is valid until the expiry time defined
         with the INTERNAL_ADDRESS EXPIRY attribute or there are no
         IKE_SAs between the peers.
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      o  INTERNAL_IP4_NETMASK - The internal network’s netmask.  Only
         one netmask is allowed in the request and reply messages (e.g.,
         255.255.255.0), and it MUST be used only with an
         INTERNAL_IP4_ADDRESS attribute.

      o  INTERNAL_IP4_DNS, INTERNAL_IP6_DNS - Specifies an address of a
         DNS server within the network.  Multiple DNS servers MAY be
         requested.  The responder MAY respond with zero or more DNS
         server attributes.

      o  INTERNAL_IP4_NBNS, INTERNAL_IP6_NBNS - Specifies an address of
         a NetBios Name Server (WINS) within the network.  Multiple NBNS
         servers MAY be requested.  The responder MAY respond with zero
         or more NBNS server attributes.

      o  INTERNAL_ADDRESS_EXPIRY - Specifies the number of seconds that
         the host can use the internal IP address.  The host MUST renew
         the IP address before this expiry time.  Only one of these
         attributes MAY be present in the reply.

      o  INTERNAL_IP4_DHCP, INTERNAL_IP6_DHCP - Instructs the host to
         send any internal DHCP requests to the address contained within
         the attribute.  Multiple DHCP servers MAY be requested.  The
         responder MAY respond with zero or more DHCP server attributes.

      o  APPLICATION_VERSION - The version or application information of
         the IPsec host.  This is a string of printable ASCII characters
         that is NOT null terminated.

      o  INTERNAL_IP4_SUBNET - The protected sub-networks that this
         edge-device protects.  This attribute is made up of two fields:
         the first is an IP address and the second is a netmask.
         Multiple sub-networks MAY be requested.  The responder MAY
         respond with zero or more sub-network attributes.

      o  SUPPORTED_ATTRIBUTES - When used within a Request, this
         attribute MUST be zero-length and specifies a query to the
         responder to reply back with all of the attributes that it
         supports.  The response contains an attribute that contains a
         set of attribute identifiers each in 2 octets.  The length
         divided by 2 (octets) would state the number of supported
         attributes contained in the response.
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      o  INTERNAL_IP6_SUBNET - The protected sub-networks that this
         edge-device protects.  This attribute is made up of two fields:
         the first is a sixteen-octet IPv6 address and the second is a
         one-octet prefix-length as defined in [ADDRIPV6].  Multiple
         sub-networks MAY be requested.  The responder MAY respond with
         zero or more sub-network attributes.

      Note that no recommendations are made in this document as to how
      an implementation actually figures out what information to send in
      a reply.  That is, we do not recommend any specific method of an
      IRAS determining which DNS server should be returned to a
      requesting IRAC.

3.16.  Extensible Authentication Protocol (EAP) Payload

   The Extensible Authentication Protocol Payload, denoted EAP in this
   memo, allows IKE_SAs to be authenticated using the protocol defined
   in RFC 3748 [EAP] and subsequent extensions to that protocol.  The
   full set of acceptable values for the payload is defined elsewhere,
   but a short summary of RFC 3748 is included here to make this
   document stand alone in the common cases.

                            1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ! Next Payload  !C!  RESERVED   !         Payload Length        !
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       !                                                               !
       ˜                       EAP Message                             ˜
       !                                                               !
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 24:  EAP Payload Format

      The payload type for an EAP Payload is forty eight (48).

                            1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       !     Code      ! Identifier    !           Length              !
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       !     Type      ! Type_Data...
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

                      Figure 25:  EAP Message Format

   o  Code (1 octet) indicates whether this message is a Request (1),
      Response (2), Success (3), or Failure (4).
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   o  Identifier (1 octet) is used in PPP to distinguish replayed
      messages from repeated ones.  Since in IKE, EAP runs over a
      reliable protocol, it serves no function here.  In a response
      message, this octet MUST be set to match the identifier in the
      corresponding request.  In other messages, this field MAY be set
      to any value.

   o  Length (2 octets) is the length of the EAP message and MUST be
      four less than the Payload Length of the encapsulating payload.

   o  Type (1 octet) is present only if the Code field is Request (1) or
      Response (2).  For other codes, the EAP message length MUST be
      four octets and the Type and Type_Data fields MUST NOT be present.
      In a Request (1) message, Type indicates the data being requested.
      In a Response (2) message, Type MUST either be Nak or match the
      type of the data requested.  The following types are defined in
      RFC 3748:

      1  Identity
      2  Notification
      3  Nak (Response Only)
      4  MD5-Challenge
      5  One-Time Password (OTP)
      6  Generic Token Card

   o  Type_Data (Variable Length) varies with the Type of Request and
      the associated Response.  For the documentation of the EAP
      methods, see [EAP].

   Note that since IKE passes an indication of initiator identity in
   message 3 of the protocol, the responder SHOULD NOT send EAP Identity
   requests.  The initiator SHOULD, however, respond to such requests if
   it receives them.

4.  Conformance Requirements

   In order to assure that all implementations of IKEv2 can
   interoperate, there are "MUST support" requirements in addition to
   those listed elsewhere.  Of course, IKEv2 is a security protocol, and
   one of its major functions is to allow only authorized parties to
   successfully complete establishment of SAs.  So a particular
   implementation may be configured with any of a number of restrictions
   concerning algorithms and trusted authorities that will prevent
   universal interoperability.
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   IKEv2 is designed to permit minimal implementations that can
   interoperate with all compliant implementations.  There are a series
   of optional features that can easily be ignored by a particular
   implementation if it does not support that feature.  Those features
   include:

      Ability to negotiate SAs through a NAT and tunnel the resulting
      ESP SA over UDP.

      Ability to request (and respond to a request for) a temporary IP
      address on the remote end of a tunnel.

      Ability to support various types of legacy authentication.

      Ability to support window sizes greater than one.

      Ability to establish multiple ESP and/or AH SAs within a single
      IKE_SA.

      Ability to rekey SAs.

   To assure interoperability, all implementations MUST be capable of
   parsing all payload types (if only to skip over them) and to ignore
   payload types that it does not support unless the critical bit is set
   in the payload header.  If the critical bit is set in an unsupported
   payload header, all implementations MUST reject the messages
   containing those payloads.

   Every implementation MUST be capable of doing four-message
   IKE_SA_INIT and IKE_AUTH exchanges establishing two SAs (one for IKE,
   one for ESP and/or AH).  Implementations MAY be initiate-only or
   respond-only if appropriate for their platform.  Every implementation
   MUST be capable of responding to an INFORMATIONAL exchange, but a
   minimal implementation MAY respond to any INFORMATIONAL message with
   an empty INFORMATIONAL reply (note that within the context of an
   IKE_SA, an "empty" message consists of an IKE header followed by an
   Encrypted payload with no payloads contained in it).  A minimal
   implementation MAY support the CREATE_CHILD_SA exchange only in so
   far as to recognize requests and reject them with a Notify payload of
   type NO_ADDITIONAL_SAS.  A minimal implementation need not be able to
   initiate CREATE_CHILD_SA or INFORMATIONAL exchanges.  When an SA
   expires (based on locally configured values of either lifetime or
   octets passed), and implementation MAY either try to renew it with a
   CREATE_CHILD_SA exchange or it MAY delete (close) the old SA and
   create a new one.  If the responder rejects the CREATE_CHILD_SA
   request with a NO_ADDITIONAL_SAS notification, the implementation
   MUST be capable of instead closing the old SA and creating a new one.
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   Implementations are not required to support requesting temporary IP
   addresses or responding to such requests.  If an implementation does
   support issuing such requests, it MUST include a CP payload in
   message 3 containing at least a field of type INTERNAL_IP4_ADDRESS or
   INTERNAL_IP6_ADDRESS.  All other fields are optional.  If an
   implementation supports responding to such requests, it MUST parse
   the CP payload of type CFG_REQUEST in message 3 and recognize a field
   of type INTERNAL_IP4_ADDRESS or INTERNAL_IP6_ADDRESS.  If it supports
   leasing an address of the appropriate type, it MUST return a CP
   payload of type CFG_REPLY containing an address of the requested
   type.  The responder SHOULD include all of the other related
   attributes if it has them.

   A minimal IPv4 responder implementation will ignore the contents of
   the CP payload except to determine that it includes an
   INTERNAL_IP4_ADDRESS attribute and will respond with the address and
   other related attributes regardless of whether the initiator
   requested them.

   A minimal IPv4 initiator will generate a CP payload containing only
   an INTERNAL_IP4_ADDRESS attribute and will parse the response
   ignoring attributes it does not know how to use.  The only attribute
   it MUST be able to process is INTERNAL_ADDRESS_EXPIRY, which it must
   use to bound the lifetime of the SA unless it successfully renews the
   lease before it expires.  Minimal initiators need not be able to
   request lease renewals and minimal responders need not respond to
   them.

   For an implementation to be called conforming to this specification,
   it MUST be possible to configure it to accept the following:

   PKIX Certificates containing and signed by RSA keys of size 1024 or
   2048 bits, where the ID passed is any of ID_KEY_ID, ID_FQDN,
   ID_RFC822_ADDR, or ID_DER_ASN1_DN.

   Shared key authentication where the ID passes is any of ID_KEY_ID,
   ID_FQDN, or ID_RFC822_ADDR.

   Authentication where the responder is authenticated using PKIX
   Certificates and the initiator is authenticated using shared key
   authentication.
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5.  Security Considerations

   While this protocol is designed to minimize disclosure of
   configuration information to unauthenticated peers, some such
   disclosure is unavoidable.  One peer or the other must identify
   itself first and prove its identity first.  To avoid probing, the
   initiator of an exchange is required to identify itself first, and
   usually is required to authenticate itself first.  The initiator can,
   however, learn that the responder supports IKE and what cryptographic
   protocols it supports.  The responder (or someone impersonating the
   responder) can probe the initiator not only for its identity, but
   using CERTREQ payloads may be able to determine what certificates the
   initiator is willing to use.

   Use of EAP authentication changes the probing possibilities somewhat.
   When EAP authentication is used, the responder proves its identity
   before the initiator does, so an initiator that knew the name of a
   valid initiator could probe the responder for both its name and
   certificates.

   Repeated rekeying using CREATE_CHILD_SA without additional Diffie-
   Hellman exchanges leaves all SAs vulnerable to cryptanalysis of a
   single key or overrun of either endpoint.  Implementers should take
   note of this fact and set a limit on CREATE_CHILD_SA exchanges
   between exponentiations.  This memo does not prescribe such a limit.

   The strength of a key derived from a Diffie-Hellman exchange using
   any of the groups defined here depends on the inherent strength of
   the group, the size of the exponent used, and the entropy provided by
   the random number generator used.  Due to these inputs, it is
   difficult to determine the strength of a key for any of the defined
   groups.  Diffie-Hellman group number two, when used with a strong
   random number generator and an exponent no less than 200 bits, is
   common for use with 3DES.  Group five provides greater security than
   group two.  Group one is for historic purposes only and does not
   provide sufficient strength except for use with DES, which is also
   for historic use only.  Implementations should make note of these
   estimates when establishing policy and negotiating security
   parameters.

   Note that these limitations are on the Diffie-Hellman groups
   themselves.  There is nothing in IKE that prohibits using stronger
   groups nor is there anything that will dilute the strength obtained
   from stronger groups (limited by the strength of the other algorithms
   negotiated including the prf function).  In fact, the extensible
   framework of IKE encourages the definition of more groups; use of
   elliptical curve groups may greatly increase strength using much
   smaller numbers.
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   It is assumed that all Diffie-Hellman exponents are erased from
   memory after use.  In particular, these exponents MUST NOT be derived
   from long-lived secrets like the seed to a pseudo-random generator
   that is not erased after use.

   The strength of all keys is limited by the size of the output of the
   negotiated prf function.  For this reason, a prf function whose
   output is less than 128 bits (e.g., 3DES-CBC) MUST NOT be used with
   this protocol.

   The security of this protocol is critically dependent on the
   randomness of the randomly chosen parameters.  These should be
   generated by a strong random or properly seeded pseudo-random source
   (see [RFC4086]).  Implementers should take care to ensure that use of
   random numbers for both keys and nonces is engineered in a fashion
   that does not undermine the security of the keys.

   For information on the rationale of many of the cryptographic design
   choices in this protocol, see [SIGMA] and [SKEME].  Though the
   security of negotiated CHILD_SAs does not depend on the strength of
   the encryption and integrity protection negotiated in the IKE_SA,
   implementations MUST NOT negotiate NONE as the IKE integrity
   protection algorithm or ENCR_NULL as the IKE encryption algorithm.

   When using pre-shared keys, a critical consideration is how to assure
   the randomness of these secrets.  The strongest practice is to ensure
   that any pre-shared key contain as much randomness as the strongest
   key being negotiated.  Deriving a shared secret from a password,
   name, or other low-entropy source is not secure.  These sources are
   subject to dictionary and social engineering attacks, among others.

   The NAT_DETECTION_*_IP notifications contain a hash of the addresses
   and ports in an attempt to hide internal IP addresses behind a NAT.
   Since the IPv4 address space is only 32 bits, and it is usually very
   sparse, it would be possible for an attacker to find out the internal
   address used behind the NAT box by trying all possible IP addresses
   and trying to find the matching hash.  The port numbers are normally
   fixed to 500, and the SPIs can be extracted from the packet.  This
   reduces the number of hash calculations to 2^32.  With an educated
   guess of the use of private address space, the number of hash
   calculations is much smaller.  Designers should therefore not assume
   that use of IKE will not leak internal address information.

   When using an EAP authentication method that does not generate a
   shared key for protecting a subsequent AUTH payload, certain man-in-
   the-middle and server impersonation attacks are possible [EAPMITM].
   These vulnerabilities occur when EAP is also used in protocols that
   are not protected with a secure tunnel.  Since EAP is a general-
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   purpose authentication protocol, which is often used to provide
   single-signon facilities, a deployed IPsec solution that relies on an
   EAP authentication method that does not generate a shared key (also
   known as a non-key-generating EAP method) can become compromised due
   to the deployment of an entirely unrelated application that also
   happens to use the same non-key-generating EAP method, but in an
   unprotected fashion.  Note that this vulnerability is not limited to
   just EAP, but can occur in other scenarios where an authentication
   infrastructure is reused.  For example, if the EAP mechanism used by
   IKEv2 utilizes a token authenticator, a man-in-the-middle attacker
   could impersonate the web server, intercept the token authentication
   exchange, and use it to initiate an IKEv2 connection.  For this
   reason, use of non-key-generating EAP methods SHOULD be avoided where
   possible.  Where they are used, it is extremely important that all
   usages of these EAP methods SHOULD utilize a protected tunnel, where
   the initiator validates the responder’s certificate before initiating
   the EAP exchange.  Implementers SHOULD describe the vulnerabilities
   of using non-key-generating EAP methods in the documentation of their
   implementations so that the administrators deploying IPsec solutions
   are aware of these dangers.

   An implementation using EAP MUST also use a public-key-based
   authentication of the server to the client before the EAP exchange
   begins, even if the EAP method offers mutual authentication.  This
   avoids having additional IKEv2 protocol variations and protects the
   EAP data from active attackers.

   If the messages of IKEv2 are long enough that IP-level fragmentation
   is necessary, it is possible that attackers could prevent the
   exchange from completing by exhausting the reassembly buffers.  The
   chances of this can be minimized by using the Hash and URL encodings
   instead of sending certificates (see section 3.6).  Additional
   mitigations are discussed in [KPS03].

6.  IANA Considerations

   This document defines a number of new field types and values where
   future assignments will be managed by the IANA.

   The following registries have been created by the IANA:

      IKEv2 Exchange Types (section 3.1)
      IKEv2 Payload Types (section 3.2)
      IKEv2 Transform Types (section 3.3.2)
          IKEv2 Transform Attribute Types (section 3.3.2)
          IKEv2 Encryption Transform IDs (section 3.3.2)
          IKEv2 Pseudo-random Function Transform IDs (section 3.3.2)
          IKEv2 Integrity Algorithm Transform IDs (section 3.3.2)
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          IKEv2 Diffie-Hellman Transform IDs (section 3.3.2)
      IKEv2 Identification Payload ID Types (section 3.5)
      IKEv2 Certificate Encodings (section 3.6)
      IKEv2 Authentication Method (section 3.8)
      IKEv2 Notify Message Types (section 3.10.1)
          IKEv2 Notification IPCOMP Transform IDs (section 3.10.1)
      IKEv2 Security Protocol Identifiers (section 3.3.1)
      IKEv2 Traffic Selector Types (section 3.13.1)
      IKEv2 Configuration Payload CFG Types (section 3.15)
      IKEv2 Configuration Payload Attribute Types (section 3.15.1)

   Note: When creating a new Transform Type, a new registry for it must
   be created.

   Changes and additions to any of those registries are by expert
   review.
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Appendix A: Summary of changes from IKEv1

   The goals of this revision to IKE are:

   1) To define the entire IKE protocol in a single document, replacing
   RFCs 2407, 2408, and 2409 and incorporating subsequent changes to
   support NAT Traversal, Extensible Authentication, and Remote Address
   acquisition;

   2) To simplify IKE by replacing the eight different initial exchanges
   with a single four-message exchange (with changes in authentication
   mechanisms affecting only a single AUTH payload rather than
   restructuring the entire exchange) see [PK01];

   3) To remove the Domain of Interpretation (DOI), Situation (SIT), and
   Labeled Domain Identifier fields, and the Commit and Authentication
   only bits;

   4) To decrease IKE’s latency in the common case by making the initial
   exchange be 2 round trips (4 messages), and allowing the ability to
   piggyback setup of a CHILD_SA on that exchange;

   5) To replace the cryptographic syntax for protecting the IKE
   messages themselves with one based closely on ESP to simplify
   implementation and security analysis;

   6) To reduce the number of possible error states by making the
   protocol reliable (all messages are acknowledged) and sequenced.
   This allows shortening CREATE_CHILD_SA exchanges from 3 messages to
   2;

   7) To increase robustness by allowing the responder to not do
   significant processing until it receives a message proving that the
   initiator can receive messages at its claimed IP address, and not
   commit any state to an exchange until the initiator can be
   cryptographically authenticated;

   8) To fix cryptographic weaknesses such as the problem with
   symmetries in hashes used for authentication documented by Tero
   Kivinen;

   9) To specify Traffic Selectors in their own payloads type rather
   than overloading ID payloads, and making more flexible the Traffic
   Selectors that may be specified;

   10) To specify required behavior under certain error conditions or
   when data that is not understood is received, to make it easier to
   make future revisions that do not break backward compatibility;
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   11) To simplify and clarify how shared state is maintained in the
   presence of network failures and Denial of Service attacks; and

   12) To maintain existing syntax and magic numbers to the extent
   possible to make it likely that implementations of IKEv1 can be
   enhanced to support IKEv2 with minimum effort.

Appendix B: Diffie-Hellman Groups

   There are two Diffie-Hellman groups defined here for use in IKE.
   These groups were generated by Richard Schroeppel at the University
   of Arizona.  Properties of these primes are described in [Orm96].

   The strength supplied by group one may not be sufficient for the
   mandatory-to-implement encryption algorithm and is here for historic
   reasons.

   Additional Diffie-Hellman groups have been defined in [ADDGROUP].

B.1.  Group 1 - 768 Bit MODP

   This group is assigned id 1 (one).

   The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 } Its
   hexadecimal value is:

        FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
        8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
        302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
        A63A3620 FFFFFFFF FFFFFFFF

   The generator is 2.

B.2.  Group 2 - 1024 Bit MODP

   This group is assigned id 2 (two).

   The prime is 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
   Its hexadecimal value is:

        FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
        8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
        302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
        A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
        49286651 ECE65381 FFFFFFFF FFFFFFFF

   The generator is 2.
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