
Nyquist Reference Manual

Version 3.24

Copyright 2013-2025 by Roger B. Dannenberg

March 5, 2025

Carnegie Mellon University

School of Computer Science

Pittsburgh, PA 15213, U.S.A.

Contents

1 Introduction and Overview . 10
1.1 Installation . 10

1.1.1 Troubleshooting . 11
1.2 Using NyquistIDE . 11
1.3 Using SAL . 12
1.4 Command Line . 12
1.5 Helpful Hints . 13
1.6 Using Lisp . 14
1.7 Examples . 14

1.7.1 Non-Sinusoidal Waveforms . 14
1.7.2 Using Wavetables . 15
1.7.3 Sequences . 16
1.7.4 Envelopes . 16
1.7.5 Piece-wise Linear Functions . 17

1.8 Predefined Constants . 18
1.9 More Examples . 20

2 The NyquistIDE Program . 21
2.1 NyquistIDE Overview . 21
2.2 The Button Bar . 22
2.3 Command Completion . 23
2.4 Extension Manager . 23
2.5 Browser . 24
2.6 Envelope Editor . 24
2.7 Equalizer Editor . 25
2.8 UPIC Editor . 25

3 Behavioral Abstraction . 27
3.1 The Environment . 27
3.2 Sequential Behavior . 29
3.3 Simultaneous Behavior . 29
3.4 Sounds vs. Behaviors . 30
3.5 The At Transformation . 31
3.6 The Stretch Transformation . 31
3.7 Nested Transformations . 32

1

Nyquist Reference Manual Contents

3.8 Defining Behaviors . 32
3.9 Overriding Default Transformations . 33
3.10 Sampling Rates . 34

4 Continuous Transformations and Time Warps . 35
4.1 Simple Transformations . 35
4.2 Time Warps . 37
4.3 Abstract Time Warps . 37
4.4 Nested Transformations . 40

5 More Examples . 41
5.1 Stretching Sampled Sounds . 41
5.2 Saving Sound Files . 42
5.3 Memory Space and Normalization . 43
5.4 Frequency Modulation . 45
5.5 Building a Wavetable . 47
5.6 Filter Examples . 47
5.7 DSP in Lisp . 48

6 SAL . 51
6.1 SAL Syntax and Semantics . 51

6.1.1 Expressions . 52
6.1.1.1 Simple Expressions . 52
6.1.1.2 Operators . 53
6.1.1.3 Function Calls . 55
6.1.1.4 Array Notation . 55
6.1.1.5 Conditional Values . 55

6.1.2 SAL Statements . 55
6.1.2.1 begin and end . 55
6.1.2.2 chdir . 56
6.1.2.3 define variable . 56
6.1.2.4 define function . 56
6.1.2.5 exec . 57
6.1.2.6 if . 57
6.1.2.7 when . 58
6.1.2.8 unless . 58
6.1.2.9 load . 58
6.1.2.10 loop . 59
6.1.2.11 play . 61
6.1.2.12 plot . 61
6.1.2.13 print . 61
6.1.2.14 display . 61
6.1.2.15 return . 62
6.1.2.16 set . 62
6.1.2.17 with . 63
6.1.2.18 exit . 63

v 3.24 2

Nyquist Reference Manual Contents

6.2 Interoperability of SAL and XLISP . 63
6.2.1 Function Calls . 64
6.2.2 Symbols and Functions . 64
6.2.3 Playing Tricks On the SAL Compiler . 64

7 Nyquist Functions . 66
7.1 Sounds . 66

7.1.1 What is a Sound? . 66
7.1.2 Multichannel Sounds . 67
7.1.3 Accessing and Creating Sound . 67
7.1.4 Miscellaneous Functions . 72

7.2 Behaviors . 76
7.2.1 Using Previously Created Sounds . 76
7.2.2 Sound Synthesis . 77

7.2.2.1 Oscillators . 81
7.2.2.2 Piece-wise Approximations . 84
7.2.2.3 Filter Behaviors . 89
7.2.2.4 Effects . 94
7.2.2.5 Physical Models . 95
7.2.2.6 Phase Vocoder . 99
7.2.2.7 More Behaviors . 100

7.3 Transformations . 104
7.4 Combination and Time Structure . 106
7.5 Sound File Input and Output . 110
7.6 Low-level Functions . 117

7.6.1 Creating Sounds . 117
7.6.2 Signal Operations . 119
7.6.3 Filters . 125
7.6.4 Table-Lookup Oscillator Functions . 129
7.6.5 Phase Vocoder Functions . 131
7.6.6 Physical Model Functions . 132
7.6.7 Sequence Support Functions . 134

8 Nyquist Globals . 135
9 Interactive Nyquist . 139

9.1 Interactive Control with the NyquistIDE . 140
9.1.1 Creating a Control Panel . 140
9.1.2 Creating Controls . 140
9.1.3 Accessing Control Values . 141
9.1.4 Starting and Stopping Sounds . 142

9.2 Using Open Sound Control . 143
9.2.1 Sending Open Sound Control Messages . 144
9.2.2 Python3 OSC Interface Demo . 144
9.2.3 Test Programs in C . 144
9.2.4 The ser-to-osc Program . 145

v 3.24 3

Nyquist Reference Manual Contents

10 Time/Frequency Transformation . 146
10.1 Spectral Processing . 147

11 MIDI, Adagio, and Sequences . 150
11.1 The SEQ Type . 150
11.2 Adagio Score Language . 152
11.3 Specifying Attributes . 153

11.3.1 Time . 153
11.3.2 Pitch . 153
11.3.3 Duration . 154
11.3.4 Next Time . 155
11.3.5 Rest . 155
11.3.6 Articulation . 155
11.3.7 Loudness . 156
11.3.8 Voice . 156
11.3.9 Timbre (MIDI Program) . 156
11.3.10 Tempo . 157
11.3.11 Rate . 157

11.4 Default Attributes . 158
11.5 Examples . 158
11.6 Advanced Features . 161

11.6.1 Time Units and Resolution . 161
11.6.2 Multiple Notes Per Line . 161
11.6.3 Control Change Commands . 162
11.6.4 Multiple Tempi . 163
11.6.5 MIDI Synchronization . 164
11.6.6 System Exclusive Messages . 164
11.6.7 Control Ramps . 165
11.6.8 The !End Command . 166
11.6.9 Calling C Routines . 166
11.6.10 Setting C Variables . 166

12 Linear Prediction Analysis and Synthesis . 168
12.1 LPC Classes and Functions . 168
12.2 Low-level LPC Functions . 170

13 Developing and Debugging in Nyquist . 171
13.1 Debugging . 171
13.2 Useful Functions . 172

14 Xmusic and Algorithmic Composition . 175
14.1 Xmusic Basics . 175
14.2 Xmusic Patterns . 175

14.2.1 Nested Patterns . 176
14.2.2 Periods . 176
14.2.3 General Parameters for Creating Pattern objects 177
14.2.4 cycle . 178

v 3.24 4

Nyquist Reference Manual Contents

14.2.5 line . 178
14.2.6 random . 178
14.2.7 palindrome . 179
14.2.8 heap . 179
14.2.9 accumulation . 180
14.2.10 copier . 180
14.2.11 accumulate . 180
14.2.12 sum . 181
14.2.13 product . 181
14.2.14 eval . 181
14.2.15 length . 182
14.2.16 window . 182
14.2.17 markov . 183

14.3 Random Number Generators . 184
14.4 Score Generation and Manipulation . 192

14.4.1 Keyword Parameters . 193
14.4.2 Using score-gen . 193
14.4.3 Score Manipulation . 195
14.4.4 Xmusic and Standard MIDI Files . 201
14.4.5 Workspaces . 202
14.4.6 Utility Functions . 203

15 Nyquist Libraries . 205
15.1 Statistics . 205
15.2 Plots . 205
15.3 Labeling Audio Events, Marking Audio Times, Displaying Marked Audio Times 205
15.4 Linear Regression . 206
15.5 Vector Math, Linear Algebra . 206
15.6 JSON Input and Output . 206
15.7 Piano Synthesizer . 206
15.8 Dynamics Compression . 207
15.9 Clipping Softener . 208
15.10 Graphical Equalizer . 209
15.11 Sound Reversal . 209
15.12 Time Delay Functions . 209
15.13 Multiple Band Effects . 210
15.14 Granular Synthesis . 211
15.15 Chowning FM Voices . 212
15.16 Atonal Melody Composition . 212
15.17 MIDI Utilities . 212
15.18 Reverberation . 212
15.19 DTMF Encoding . 212
15.20 Dolby Surround(R), Stereo and Spatialization Effects . 213
15.21 Drum Machine . 214

v 3.24 5

Nyquist Reference Manual Contents

A Extending Nyquist . 217
A.1 Translating Descriptions to C Code . 217
A.2 Rebuilding Nyquist . 217
A.3 Accessing the New Function . 218
A.4 Why Translation? . 218
A.5 Writing a .alg File . 218
A.6 Attributes . 219
A.7 Generated Names . 223
A.8 Scalar Arguments . 224

B Intgen . 225
B.1 Overview . 225

B.1.1 Extending Xlisp . 226
B.2 Header file format . 226
B.3 Using #define’d macros . 228
B.4 Lisp Include Files . 229
B.5 Example . 229
B.6 More Details . 229

C XLISP: An Object-oriented Lisp . 230
C.1 Introduction . 230
C.2 A Note From The Author . 231
C.3 XLISP Command Loop . 231
C.4 Special Characters . 231
C.5 Break Command Loop . 232
C.6 Data Types . 232
C.7 The Evaluator . 233
C.8 Lexical Conventions . 233
C.9 Readtables . 234
C.10 Lambda Lists . 235
C.11 Objects . 236
C.12 The “Object” Class . 237
C.13 The “Class” Class . 237
C.14 Profiling . 238
C.15 Symbols . 238
C.16 Evaluation Functions . 239
C.17 Symbol Functions . 240
C.18 Property List Functions . 242
C.19 Array Functions . 242
C.20 List Functions . 243
C.21 Destructive List Functions . 245
C.22 Predicate Functions . 246
C.23 Control Constructs . 249
C.24 Looping Constructs . 251
C.25 The Program Feature . 252

v 3.24 6

Nyquist Reference Manual Contents

C.26 Debugging and Error Handling . 253
C.27 Arithmetic Functions . 254
C.28 Bitwise Logical Functions . 256
C.29 String Functions . 257
C.30 Character Functions . 259
C.31 Input/Output Functions . 261
C.32 The Format Function . 262
C.33 File I/O Functions . 263
C.34 String Stream Functions . 265
C.35 System Functions . 266
C.36 File I/O Functions . 268

C.36.1 Input from a File . 268
C.36.2 Output to a File . 269
C.36.3 A Slightly More Complicated File Example . 269

Index . 271

v 3.24 7

Preface

This manual is a guide for users of Nyquist, a language for composition and sound synthesis. Nyquist grew
out of a series of research projects, notably the languages Arctic and Canon. Along with Nyquist, these
languages promote a functional style of programming and incorporate time into the language semantics.

Please help by noting any errors, omissions, or suggestions you may have. You can send your suggestions to
Dannenberg@CS.CMU.EDU via email, or contact me by ordinary mail: Roger B. Dannenberg, School of
Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213-3890, USA.

Nyquist is a successor to Fugue, a language originally implemented by Chris Fraley, and extended by George
Polly and Roger Dannenberg. Peter Velikonja and Dean Rubine were early users, and they proved the value
as well as discovered some early problems of the system. This led to Nyquist, a reimplementation of Fugue
by Roger Dannenberg with help from Joe Newcomer and Cliff Mercer. Ning Hu ported Zheng (Geoffrey)
Hua and Jim Beauchamp’s piano synthesizer to Nyquist and also built NyqIDE, the Nyquist Integrated
Development Environment for Windows. Dave Mowatt contributed the original version of NyquistIDE, the
cross-platform interactive development environment. Dominic Mazzoni made a special version of Nyquist
that runs within the Audacity audio editor, giving Nyquist a new interface and introducing Nyquist to many
new users.

Many others have since contributed to Nyquist. Chris Tchou and Morgan Green worked on the Windows
port. Eli Brandt contributed a number of filters and other synthesis functions. Pedro J. Morales, Eduardo
Reck Miranda, Ann Lewis, and Erich Neuwirth have all contributed nyquist examples found in the demos
folder of the Nyquist distribution. Philip Yam ported some synthesis functions from Perry Cook and Gary
Scavone’s STK to Nyquist. Pedro Morales ported many more STK instruments to Nyquist. Dave Borel wrote
the Dolby Pro-Logic encoding library and Adam Hartman wrote stereo and spatialization effects. Stephen
Mangiat wrote the MiniMoog emulator. Phil Light recorded the drum samples and wrote drum machine
software. The Xmusic library, particularly the pattern specification, was inspired by Rick Taube’s Common
Music. The functions for generating probability distributions were implemented by Andreas Pfenning. John
Chowning and Jorge Sastre contributed a SAL implementation of Chowning’s voice synthesis technique.
Chen Ziheng implemented the majority of the cmupv phase vocoder library used for Nyquist’s phasevocoder
and pv-pitch-time functions.

Starting with Version 3, Nyquist supports a version of SAL, providing an alternative to Lisp syntax. SAL was
designed by Rick Taube, and the SAL implementation in Nyquist is based on Taube’s original implementation
as part of his Common Music system.

8

Nyquist Reference Manual Contents

The current NyquistIDE includes contributions from many. Chris Yealy and Derek D’Souza implemented
early versions of the envelope editor. Daren Makuck and Michael Rivera wrote the original equalizer editor.
Priyanka Raghavan implemented the sound browser. Dmitry Portnoy wrote the original "UPIC" editor.
Azarakhsh Keipour wrote the original extension manager.

Many others have made contributions, offered suggestions, and found bugs. If you were expecting to find
your name here, I apologize for the omission, and please let me know.

I also wish to acknowledge support from CMU, Yamaha, and IBM for this work.

v 3.24 9

1 Introduction and Overview

Nyquist is a language for sound synthesis and music composition. Unlike score languages that tend to deal
only with events, or signal processing languages that tend to deal only with signals and synthesis, Nyquist
handles both in a single integrated system. Nyquist is also flexible and easy to use because it is based on an
interactive Lisp interpreter.

With Nyquist, you can design instruments by combining functions (much as you would using the orchestra
languages of Music V, cmusic, or Csound). You can call upon these instruments and generate a sound just
by typing a simple expression. You can combine simple expressions into complex ones to create a whole
composition.

Nyquist runs under Linux, Apple macOS, Microsoft Windows NT, 2000, XP, and Vista, and it produces
sound files or directly generates audio. Recent versions have also run on AIX, NeXT, SGI, DEC pmax, and
Sun Sparc machines. (Makefiles for many of these are included, but out-of-date). Let me know if you have
problems with any of these machines.

The core language of Nyquist is Lisp. Nyquist extends Lisp for sound synthesis and processing. Starting
with Version 3, Nyquist supports a variant of SAL syntax. SAL is a language distinct from Lisp, but it
can be translated to Lisp and SAL and Lisp programs can be combined. SAL was introduced in Rick
Taube’s Common Music system. Since there are some differences between Nyquist and Common Music, one
should generally call this implementation “Nyquist SAL;” however, in this manual, I will just call it “SAL.”
SAL offers most of the capabilities of Lisp, but it uses an Algol-like syntax that may be more familiar to
programmers with experience in Java, C, Basic, etc. An introduction to SAL is in Mary Simoni and Roger B.
Dannenberg, Algorithmic Composition: A Guide to Composing Music with Nyquist [2]. To learn about Lisp,
an excellent text by Touretzky is recommended [3]. Appendix C is the reference manual for XLISP, of which
Nyquist is a superset.

1.1 Installation

Nyquist is a C++ program intended to run under various operating systems including Unix, macOS, and
Windows. Nyquist is based on Lisp, but it includes its own Lisp interpreter (a modified version of XLISP),
so you do not need to install some other Lisp to run Nyquist. Other Lisp systems are not compatible with
Nyquist.

10

Nyquist Reference Manual Chapter 1. Introduction and Overview

Most Nyquist users run Nyquist under the Nyquist IDE, which is written in Java and depends on the Java
runtime system. Most systems already have Java, but if you do not, you will need to install it. Java from
Oracle is recommended, e.g. Java SE Development Kit 17. When you install the Nyquist IDE, you will
automatically get Nyquist and a set of runtime libraries.

There are generally two ways to install Nyquist:

• Get a pre-compiled version of the Nyquist IDE for Windows or macOS. The Windows version comes
packaged in an installer that installs and configures the Nyquist IDE. The macOS version unpacks to a
complete OS X application.

• Compile from sources. There is one set of sources for Mac, Windows, and Unix. Instructions
for building applications from the sources are provided in the files sys/win/README.txt,
sys/mac/README.txt, and sys/unix/README.txt.

You can download source code and precompiled versions from the Nyquist project on SourceForge
(http://sourceforge.net/projects/nyquist). The latest source code can be obtained via Subversion
(svn) using the following:

svn co svn://svn.code.sf.net/p/nyquist/code/trunk/nyquist nyquist

or by checking out nyquist using a graphical interface svn client such as TortoiseSVN for Windows.

1.1.1 Troubleshooting

All versions of Nyquist includes a Readme.txt file in the top-level nyquist directory with general information.
Additional information and instructions on installation can be found in:

• nyquist/doc/readme-win.txt

• nyquist/doc/readme-mac.txt

• nyquist/doc/readme-linux.txt

1.2 Using NyquistIDE

The program named NyquistIDE is an “integrated development environment” for Nyquist. When you run
NyquistIDE, it starts the Nyquist program and displays all Nyquist output in a window. NyquistIDE helps you
by providing a Lisp and SAL editor, hints for command completion and function parameters, some graphical
interfaces for editing envelopes and graphical equalizers, and a panel of buttons for common operations. A
more complete description of NyquistIDE is in Chapter 2.

v 3.24 11

Nyquist Reference Manual Chapter 1. Introduction and Overview

For now, all you really need to know is that you can enter Nyquist commands by typing into the upper left
window. When you type return, the expression you typed is sent to Nyquist, and the results appear in the
window below. You can edit files by clicking on the New File or Open File buttons. After editing some text,
you can load the text into Nyquist by clicking the Load button. NyquistIDE always saves the file first; then it
tells Nyquist to load the file. You will be prompted for a file name the first time you load a new file.

1.3 Using SAL

SAL mode means that Nyquist reads and evaluates SAL commands rather than Lisp. The SAL mode
prompt is "SAL> " while the Lisp mode prompt is "> ". When Nyquist starts it normally enters SAL
mode automatically, but certain errors may exit SAL mode. You can reenter SAL mode by typing the Lisp
expression (sal).

In SAL mode, you type commands in the SAL programming language. Nyquist reads the commands,
compiles them into Lisp, and evaluates the commands. Commands can be entered manually by typing into
the upper left text box in NyquistIDE.

1.4 Command Line

When run from the command line, Nyquist (usually the command is ny) looks for some options and some
files to load. There are several options.

The -Rpaths option gives Nyquist a list of paths (separated by semicolons) to directories where Nyquist is
allowed to read files. Files in any subdirectories of the listed directories can also be read, along with the
directories themselves. This option can be used to restrict access to files.

The -Wpaths option gives Nyquist a list of paths (separated by semicolons) to directories where Nyquist is
allowed to write files (including sound files). If -W is used, Nyquist will not open audio output to play sounds
and will not allow access to Open Sound Control. This option can be used to protect files from accidentally
malicious code. (If you are truly worried about Nyquist code, you should run Nyquist in a virtual machine or
other isolated machine. It is unlikely that Nyquist is secure from all attacks.)

The -Lrun-time-limit option gives Nyquist a run time limit. If the limit is exceeded, Nyquist prints an error
message and exits. The time is based on Lisp expression evaluations rather than CPU seconds or wall time or
even execution time involved in printing or signal processing. One unit of run time is on the order of 10ms of
CPU time (for a medium speed computer in 2019), but depending on what you are computing, a unit of run
time can vary from 60ms to 1.5ms. You can use the GET-RUN-TIME function to read the internal run-time
counter to see how much computation you have done in the same units.

The -Mmemory-limit option gives Nyquist a memory limit. If the limit (in megabytes) is exceeded, Nyquist
prints an error message and exits. The limit includes all XLISP data (cons cells, strings, etc.) plus sample
blocks and tables allocated for signal processing.

v 3.24 12

Nyquist Reference Manual Chapter 1. Introduction and Overview

The -Ttranscript-file-name option copies console output to a transcript file.

The -V option sets verbose mode. If set, any files specified on the command line to be loaded are loaded with
the verbose option.

Additionally, the command line can name files to be loaded. Nyquist begins by loading init.lsp, which by
default is in the nyquist/runtime directory. This file loads all the standard Nyquist functions. After that,
Nyquist will load any other files named on the command line.

Finally, Nyquist expects to find search paths in the XLISPPATH environment variable (or for Windows,
see installation instructions; the path is saved in the Windows Registry). Normally, you must set
XLISPPATH for Nyquist to find init.lsp and the definitions of most Nyquist functions. Be sure you have
system.lsp in nyquist/runtime. Part of the installation process copies the appropriate system.lsp
from nyquist/sys/* to nyquist/runtime where it can be found and loaded by init.lsp.

1.5 Helpful Hints

Under Win95 and Win98, the console sometimes locks up. Activating another window and then reactivating
the Nyquist window should unlock the output. (We suggest you use NyquistIDE, the interactive development
environment rather than a console window.)

You can cut and paste text into Nyquist, but for serious work, you will want to use the Lisp load command. To
save even more time, write a function to load your working file, e.g. (defun l () (load "myfile.lsp")).
Then you can type (l) to (re)load your file.

Using SAL, you can type

define function l () load "myfile.lsp"

and then

exec l()

to (re)load the file.

The Emacs editor is free GNU software and will help you balance parentheses if you use Lisp mode.
In fact, you can run nyquist (without the IDE) as a subprocess to Emacs. A helful discussion is at
//http://www.audacity-forum.de/download/edgar/nyquist/nyquist-doc/examples/emacs/main.html. If you
use Emacs, there is also a SAL mode (the file is sal-mode.el) included with the Common Music distribu-
tion, which you can find on the Web at sourceforge.net.

The NyquistIDE also runs Nyquist as a subprocess and has built-in Lisp and SAL editors. If your editor
does not help you balance parentheses, you may find yourself counting parens and searching for unbalanced
expressions. If you are confused or desperate and using Lisp syntax, try the :print t option of the load
function. By looking at the expressions printed, you should be able to tell where the last unbalanced
expression starts. Alternatively, type (file-sexprs) and type the lisp file name at the prompt. This function
will read and print expressions from the file, reporting an error when an extra paren or end-of-file is reached
unexpectedly.

v 3.24 13

Nyquist Reference Manual Chapter 1. Introduction and Overview

1.6 Using Lisp

Lisp mode means that Nyquist reads and evaluates Nyquist expressions in Lisp syntax. Since Nyquist is build
on a Lisp interpreter, this is the “native” or machine language of Nyquist, and certain errors and functions
may break out of the SAL interpreter, leaving you with a prompt for a Lisp expression. Alternatively, you can
exit SAL simply by typing exit to get a Lisp prompt (>). Commands can be entered manually by typing
into the upper left text box in NyquistIDE.

1.7 Examples

We will begin with some simple Nyquist programs. Throughout the manual, we will assume SAL mode and
give examples in SAL, but it should be emphasized that all of these examples can be performed using Lisp
syntax. See Section 6.2 on the relationship between SAL and Lisp.

Detailed explanations of the functions used in these examples will be presented in later chapters, so at this
point, you should just read these examples to get a sense of how Nyquist is used and what it can do. The
details will come later. Most of these examples can be found in the file nyquist/lib/examples.sal.
Corresponding Lisp syntax examples are in the file nyquist/lib/examples.lsp.

Our first example makes and plays a sound:
;; Making a sound.
play osc(60) ; generate a loud sine wave

This example is about the simplest way to create a sound with Nyquist. The osc function generates a sound
using a table-lookup oscillator. There are a number of optional parameters, but the default is to compute a
sinusoid with an amplitude of 1.0. The parameter 60 designates a pitch of middle C. (Pitch specification will
be described in greater detail later.) The result of the osc function is a sound. To hear a sound, you must use
the play command, which plays the file through the machine’s D/A converters. It also writes a soundfile in
case the computation cannot keep up with real time. You can then (re)play the file by typing:

exec r()

This (r) function is a general way to “replay” the last thing written by play.

Note: when Nyquist plays a sound, it scales the signal by 215 −1 and (by default) converts to a 16-bit integer
format. A signal like (osc 60), which ranges from +1 to -1, will play as a full-scale 16-bit audio signal.

1.7.1 Non-Sinusoidal Waveforms

Our next example will be presented in several steps. The goal is to create a sound using a wavetable consisting
of several harmonics as opposed to a simple sinusoid. In order to build a table, we will use a function that
computes a single harmonic and add harmonics to form a wavetable. An special function, build-harmonic
is used to compute the harmonics, but it is just a convenient wrapper for the primitive function snd-sine.

v 3.24 14

Nyquist Reference Manual Chapter 1. Introduction and Overview

The function mkwave calls upon build-harmonic to generate a total of four harmonics with amplitudes 0.5,
0.25, 0.125, and 0.0625. These are scaled and added (using +) to create a waveform which is bound to local
variable wave.

A complete Nyquist wavetable specification is a list consisting of a sound, a pitch, and T, indicating a periodic
waveform. The pitch gives the nominal pitch of the sound. (This is implicit in a single cycle wave table, but a
sampled sound may have many periods of the fundamental.) Pitch is expressed in half-steps, where middle C
is 60 steps, as in MIDI pitch numbers. The list of sound, pitch, and T is formed in the last line of mkwave:
since build-harmonic computes signals with a duration of one second, the fundamental is 1 Hz, and the
hz-to-step function converts to pitch (in units of steps) as required.

define function mkwave()
begin

with wave = 0.5 * build-harmonic(1, 2048) +
0.25 * build-harmonic(2, 2048) +
0.125 * build-harmonic(3, 2048) +
0.0625 * build-harmonic(4, 2048)

set *mytable* = list(wave, hz-to-step(1.0), #t)
end

Now that we have defined a function, the next step of this example is to build the wavetable. The following
code calls mkwave the first time the code is executed (loaded from a file). The second time, the variable
mkwave will be set, so mkwave will not be invoked:

if ! boundp(quote(*mkwave*)) then
begin

exec mkwave()
set *mkwave* = #t

end

1.7.2 Using Wavetables

When Nyquist starts, several waveforms are created and stored in global variables for convenience. They are:
sine-table, *saw-table*, and *tri-table*, implementing sinusoid, sawtooth, and triangle waves,
respectively. The variable *table* is initialized to *sine-table*, and it is *table* that forms the default
wavetable for many Nyquist oscillator behaviors. If you want a proper, band-limited waveform, you should
construct it yourself, but if you do not understand this sentence and/or you do not mind a bit of aliasing, give
saw-table and *tri-table* a try.

Note that in Lisp and SAL, global variables often start and end with asterisks (*). These are not special
syntax, they just happen to be legal characters for names, and their use is purely a convention.

v 3.24 15

Nyquist Reference Manual Chapter 1. Introduction and Overview

1.7.3 Sequences

Finally, we define my-note to use the waveform, and play several notes in a simple score. Note that the
function my-note has only one command (a return command), so it is not necessary to use begin and end.
These are only necessary when the function body consists of a sequence of statements:

define function my-note(pitch, dur)
return osc(pitch, dur, *mytable*)

play seq(my-note(c4, i), my-note(d4, i), my-note(f4, i),
my-note(g4, i), my-note(d4, q))

Here, my-note is defined to take pitch and duration as parameters; it calls osc to do the work of generating a
waveform, using *mytable* as a wave table. In earlier examples, we saw osc with only two parameters. In
that case, *table* is used, but here we specify our new table *mytable*.

The seq function is used to invoke a sequence of behaviors. Each note is started at the time the previous note
finishes. The parameters to my-note are predefined in Nyquist: c4 is middle C, i (for eIghth note) is 0.5,
and q (for Quarter note) is 1.0. See Section 1.8 for a complete description. The result is the sum of all the
computed sounds.

Sequences can also be constructed using the at transformation to specify time offsets.

1.7.4 Envelopes

The next example will illustrate the use of envelopes. In Nyquist, envelopes are just ordinary sounds (although
they normally have a low sample rate). An envelope is applied to another sound by multiplication using the
mult function. The code shows the definition of env-note, defined in terms of the note function in the
previous example. In env-note, a 4-phase envelope is generated using the env function, which is illustrated
in Figure 1.1.

; env-note produces an enveloped note. The duration
; defaults to 1.0, but stretch can be used to change
; the duration.
; Uses my-note, defined above.
;
define function env-note(p)

return my-note(p, 1.0) *
env(0.05, 0.1, 0.5, 1.0, 0.5, 0.4)

; try it out:
;
play env-note(c4)

While this example shows a smooth envelope multiplied by an audio signal, you can also multiply audio
signals to achieve what is often called ring modulation.

v 3.24 16

Nyquist Reference Manual Chapter 1. Introduction and Overview

Figure 1.1: An envelope generated by the env function.

In the next example, The stretch operator (~) is used to modify durations:
; now use stretch to play different durations
;
play seq(seq(env-note(c4), env-note(d4)) ~ 0.25,

seq(env-note(f4), env-note(g4)) ~ 0.5,
env-note(c4))

In addition to stretch, there are a number of transformations supported by Nyquist, and transformations of
abstract behaviors is perhaps the fundamental idea behind Nyquist. Chapter 3 is devoted to explaining this
concept, and further elaboration can be found elsewhere [1].

1.7.5 Piece-wise Linear Functions

It is often convenient to construct signals in Nyquist using a list of (time, value) breakpoints which are
linearly interpolated to form a smooth signal. Envelopes created by env are a special case of the more general
piece-wise linear functions created by pwl. Since pwl is used in some examples later on, we will take a look
at pwl now. The pwl function takes a list of parameters which denote (time, value) pairs. There is an implicit
initial (time, value) pair of (0, 0), and an implicit final value of 0. There should always be an odd number of
parameters, since the final value (but not the final time) is implicit. Here are some examples:

; symmetric rise to 10 (at time 1) and fall back to 0 (at time 2):
;
pwl(1, 10, 2)

v 3.24 17

Nyquist Reference Manual Chapter 1. Introduction and Overview

; a square pulse of height 10 and duration 5.
; Note that the first pair (0, 10) overrides the default initial
; point of (0, 0). Also, there are two points specified at time 5:
; (5, 10) and (5, 0). (The last 0 is implicit). The conflict is
; automatically resolved by pushing the (5, 10) breakpoint back to
; the previous sample, so the actual time will be 5 - 1/sr, where
; sr is the sample rate.
;
pwl(0, 10, 5, 10, 5)

; a constant function with the value zero over the time interval
; 0 to 3.5. This is a very degenerate form of pwl. Recall that there
; is an implicit initial point at (0, 0) and a final implicit value of
; 0, so this is really specifying two breakpoints: (0, 0) and (3.5, 0):
;
pwl(3.5)

; a linear ramp from 0 to 10 and duration 1.
; Note the ramp returns to zero at time 1. As with the square pulse
; above, the breakpoint (1, 10) is pushed back to the previous sample.
;
pwl(1, 10, 1)

; If you really want a linear ramp to reach its final value at the
; specified time, you need to make a signal that is one sample longer.
; The RAMP function does this:
;
ramp(10) ; ramp from 0 to 10 with duration 1 + one sample period
;
; RAMP is based on PWL; it is defined in nyquist.lsp.
;

1.8 Predefined Constants

For convenience and readability, Nyquist pre-defines some constants, mostly based on the notation of the
Adagio score language, as follows:

• Dynamics Note: these dynamics values are subject to change.

lppp = -12.0 (dB)
lpp = -9.0
lp = -6.0
lmp = -3.0
lmf = 3.0

v 3.24 18

Nyquist Reference Manual Chapter 1. Introduction and Overview

lf = 6.0
lff = 9.0
lfff = 12.0
dB0 = 1.00
dB1 = 1.122
dB10 = 3.1623

• Durations

s = Sixteenth = 0.25
i = eIghth = 0.5
q = Quarter = 1.0
h = Half = 2.0
w = Whole = 4.0
sd, id, qd, hd, wd = dotted durations.
st, it, qt, ht, wt = triplet durations.

• Pitches Pitches are based on an A4 of 440Hz. To achieve a different tuning, set *A4-Hertz* to the
desired frequency for A4, and call (set-pitch-names). This will recompute the names listed below
with a different tuning. In all cases, the pitch value 69.0 corresponds exactly to 440Hz, but fractional
values are allowed, so for example, if you set *A4-Hertz* to 444 (Hz), then the symbol A4 will be
bound to 69.1567, and C4 (middle C), which is normally 60.0, will be 60.1567.

c0 = 12.0
cs0, df0 = 13.0
d0 = 14.0
ds0, ef0 = 15.0
e0 = 16.0
f0 = 17.0
fs0, gf0 = 18.0
g0 = 19.0
gs0, af0 = 20.0
a0 = 21.0
as0, bf0 = 22.0
b0 = 23.0
c1 ... b1 = 24.0 ... 35.0
c2 ... b2 = 36.0 ... 47.0
c3 ... b3 = 48.0 ... 59.0
c4 ... b4 = 60.0 ... 71.0
c5 ... b5 = 72.0 ... 83.0
c6 ... b6 = 84.0 ... 95.0
c7 ... b7 = 96.0 ... 107.0

v 3.24 19

Nyquist Reference Manual Chapter 1. Introduction and Overview

c8 ... b8 = 108.0 ... 119.0

• Miscellaneous

ny:all = “all the samples” (i.e. a big number) = 1000000000

1.9 More Examples

More examples can be found in a set of extensions, which are not included in the Nyquist download files.
Instead, the NyquistIDE has a Window : Extension Manager menu item. Selecting this will open the Extension
Manager, which enables you to download and install or update selected extensions to the nyquist/lib
directory. The Extension Manager will also allow you to browse documentation for each extension. Here are
some highlights of what is available:

• Code to create atonal melodies (nyquist/lib/atonal/atonal-melodies.sal).

• How to make arpeggios (nyquist/lib/arpeggiator/arpeggiator.htm and
nyquist/lib/arpeggiator/arp.sal)

• Gong sounds by additive synthesis (nyquist/lib/pmorales/b1.lsp and
nyquist/lib/pmoralies/mateos/gong.lsp)

• Risset’s spectral analysis of a chord (nyquist/lib/pmorales/b2.lsp)

• Bell sounds (nyquist/lib/pmorales/b3.lsp, nyquist/lib/pmorales/e2.lsp,
nyquist/lib/pmorales/partial.lsp, and nyquist/lib/mateos/bell.lsp)

• Drum sounds by Risset (nyquist/lib/pmorales/b8.lsp

• Shepard tones (nyquist/lib/shepard/shepard.lsp and nyquist/lib/pmorales/b9.lsp)

• Random signals (nyquist/lib/pmorales/c1.lsp)

• Buzz with formant filters (nyquist/lib/pmorales/buzz.lsp)

• Computing samples directly in Lisp (using Karplus-Strong and physical modelling as examples)
(nyquist/lib/pmorales/d1.lsp)

• FM Synthesis examples, including FM voices
(nyquist/lib/fm-voices-chowning/fm-voices-chowning.sal) designed by John Chowning,
tuba sound (nyquist/lib/mateos/tuba.lsp), and see nyquist/lib/pmorales/e2.lsp for ex-
amples of FM bell, wood drum, brass sounds, and clarinet sounds.

• Rhythmic patterns (nyquist/lib/rhythm/rhythm_tutorial.html)

• Drum Samples and Drum Machine (nyquist/lib/plight/drum.lsp). (See Section 15.21).

v 3.24 20

2 The NyquistIDE Program

The NyquistIDE program combines many helpful functions and interfaces to help you get the most out of
Nyquist. NyquistIDE is implemented in Java, and you will need the Java runtime system or development
system installed on your computer to use NyquistIDE. The best way to learn about NyquistIDE is to just use
it. This chapter introduces some of the less obvious features. If you are confused by something and you do
not find the information you need here, please contact the author.

2.1 NyquistIDE Overview

The NyquistIDE runs the command-line version of Nyquist as a subtask, so everything that works in Nyquist
should work when using the NyquistIDE and vice-versa. Input to Nyquist is usually entered in the top left
window of the NyquistIDE. When you type return, if the expression or statement appears to be complete, the
expression you typed is sent to Nyquist. Output from Nyquist appears in a window below. You cannot type
into or edit the output window text.

The normal way to use the NyquistIDE is to create or open one or more files. You edit these files and then
click the Load button. To load a file, NyquistIDE saves the file, sets the current directory of Nyquist to that
of the file, then issues a load command to Nyquist. In this case and several others, you may notice that
NyquistIDE sends expressions to Nyquist automatically for evaluation. You can always see the commands
and their results in the output window.

Notice that when you load a selected file window, NyquistIDE uses setdir to change Nyquist’s current
directory. This helps to keep the two programs in sync. Normally, you should keep all the files of a project in
the same directory and avoid manually changing Nyquist’s current directory (i.e. avoid calling setdir in
your code).

Arranging windows in the NyquistIDE can be time-consuming, and depending on the operating system, it is
possible for a window to get into a position where you cannot drag it to a new position. The Window:Tile
menu command can be used to automatically lay out windows in a rational way. There is a preference setting
to determine the height of the completion list relative to the height of the output window.

Many of the key commands for editing files are standard and built into Java. A special command, “Copy to
Lisp,” or Control-U (Command-U on macOS) copies the selection and enters it into the input window as if it
had been typed there.

21

Nyquist Reference Manual Chapter 2. The NyquistIDE Program

2.2 The Button Bar

There are a number of buttons with frequently-used operations. These are:

• Info – Print information about Nyquist memory utilization, including the number of free cons cells,
the number of garbage collections, the total number of cons cells, the total amount of sample buffer
memory, and the amount of memory in free sample buffers.

• Break – Send a break character to XLISP. This can be used to enter the debugger (the break loop) while
a program is running. Resume by typing (co).

• SAL/Lisp – Switch modes. The button names the mode (SAL or Lisp) you will switch to, not the
current mode. For example, if you are in Lisp mode and want to type a SAL command, click the SAL
button first.

• Top – Enters (top) into Nyquist. If the XLISP prompt is 1> or some other integer followed by “>”,
clicking the Top button will exit the debug loop and return to the top-level prompt.

• Replay – Enters (r) into Nyquist. This command replays the last computed sound.

• F2-F12 – Enters (f2) etc. into Nyquist. These commands are not built-in, and allow users to define
their own custom actions.

• Browse – Equivalent to the Window:Browse menu item. (See Section 2.5.)

• EQ – Equivalent to the Window:EQ menu item. (See Section 2.7.)

• EnvEdit – Equivalent to the Window:Envelope Edit menu item. (See Section 2.6.)

• NewFile – Equivalent to the File:New menu item. Opens a new file editing window for creating and
loading a Lisp or SAL program file.

• OpenFile – Equivalent to the File:Open menu item. Opens an existing Lisp or SAL program file for
editing and loading.

• SaveFile – Equivalent to the File:Save menu item (found on the editing window’s menu bar). Saves the
contents of an editing window to its associated file.

• Load – Equivalent to the File:Load menu item (found on the editing window’s menu bar). Performs a
Save operation, then sends a command to Nyquist that loads the file as a program.

• Mark – Sends a Control-A to Nyquist. While playing a sound, this displays and records the approximate
time in the audio stream. (See Section 7.5 for more detail.)

v 3.24 22

Nyquist Reference Manual Chapter 2. The NyquistIDE Program

2.3 Command Completion

To help with programming, NyquistIDE maintains a command-completion window. As you type the first
letters of function names, NyquistIDE lists matching functions and their parameters in the Completion List
window. If you click on an entry in this window, the displayed expression will replace the incompletely typed
function name. A preference allows you to match initial letters or any substring of the complete function
name. This is controlled by the “Use full search for code completion” preference.

In addition, if you right click (or under macOS, hold down the Alt/Option key and click) on an entry,
NyquistIDE will display documentation for the function. Documentation can come from a local copy or from
the online copy (determined by the “Use online manual instead of local copy” preference). Documentation
can be displayed within the NyquistIDE window or in an external browser (determined by the “Use window
in NyquistIDE for help browser” preference.) Currently, the external browser option does not seem to locate
documentation properly, but this should be fixed in the future.

2.4 Extension Manager

The NyquistIDE Extension Manager is a facility to download extensions that are written in Lisp or SAL. (If
you want to extend the nyquist program itself or the NyquistIDE program, you will have to write C or Java
respectively and recompile. See Appendix A for information on writing new DSP functions, also known as
unit generators.)

Selecting the Extension Manager item in the Window menu will open a window in the NyquistIDE
with a list of extensions. Each extension is stored as a subdirectory of the lib directory, which
should be on the search path (XLISPPATH) for nyquist. A list of extensions is hosted in a fixed
location (https://www.cs.cmu.edu/~music/nyquist/extensions/extlist.txt) along with secure
checksums to guard against malicious code.

When you install an extension, a single file is first downloaded using a URL that is obtained from the list of
extensions, and the file is scanned for a header that can specify additional files to download.

Some special files may be included in an extension. autoload.lsp is a Lisp file that is loaded automatically
when nyquist is started. Nyquist scans the subdirectories of the lib directory to find all the autoload.lsp
files. Typically, autoload.lsp files are used to create stubs for functions in the extensions so that extension
code is mostly loaded dynamically on demand, saving time and space when nyquist starts.

Extensions may also include nyquistwords.txt, which is a description of functions in the extensions that
is used to generate the completion list. When an extension function appears in the completion list, it is
followed by "ext:" and the extension name, e.g. the completion item "speed-dial(list) ext: dtmf" means that
the speed-dial function is defined in the dtmf directory. By convention, any function in the completion list
should be directly callable, with an entry in autoload.lsp so that the function will be dynamically loaded.

To create a new extension, see the extension ext-template1 for an example with documentation in HTML,
or ext-template2 for a simple single-file extension where the documentation consists of comments in the

v 3.24 23

Nyquist Reference Manual Chapter 2. The NyquistIDE Program

SAL source file.

To submit an extension for possible publication, it is best to put the extension file(s) in a local directory and
use a customized local list of extensions. The Nyquist Preferences includes a button where you can designate
a local file for the list of extensions. It should have the same format as extlist.txt at the URL given
above (you can simply open the URL in your browser to see it. The extension under development can be
referenced in the extension list using a URL with the file:// protocol. For the checksum, use any value.
The Extension Manager will compute the correct checksum and display it, so you can then copy that into
your extlist.txt, click the Update button to fetch it, and try again to install the extension.

2.5 Browser

If you click on the Browse button or use the Window:Browse menu command, NyquistIDE will display a
browser window that is pre-loaded with a number of Nyquist commands to create sounds. You can adjust
parameters, audition the sounds, and capture the expression that creates the sound. In many cases, the
expression checks to see if necessary functions are defined, loading files if necessary before playing the
sound. If you want to use a sound in your own program, you can often simplify things by explicitly loading
the required file just once at the beginning of your file.

Since Nyquist now supports a mix of Lisp and SAL, you may find yourself in the position of having code
from the browser in one language while you are working in the other. The best way to handle this is to put the
code for the sound you want into a function defined in a Lisp (.lsp) or SAL (.sal) file. Load the file (from
Lisp, use the sal-load command to load a SAL file), and call the function from the language of your choice.

2.6 Envelope Editor

The envelope editor allows you graphically to design and edit piece-wise linear and exponential envelopes.
The editor maintains a list of envelopes and you select the one to edit or delete using the drop down list in the
Saved Envelopes List area. The current envelope appears in the Graphical Envelope Editor area. You can
click to add or drag points. Alternatively, you can use the Envelope Points window to select and edit any
breakpoint by typing coordinates. The duration of the envelope is controlled by the Stop field in the Range
area, and the vertical axis is controlled by the Min and Max fields.

When you click the Save button, all envelopes are written to Nyquist. You can then use the envelope by
treating the envelope name as a function. For example, if you define an envelope named “fast-attack,” then
you can create the envelope within a Nyquist SAL program by writing the expression fast-attack().

These edited envelopes are saved to a file named workspace.lsp in the current directory. The workspace
is Nyquist’s mechanism for saving data of all kinds (see Section 14.4.5). The normal way to work with
workspaces is to (1) load the workspace, i.e. load "workspace", as soon as you start Nyquist; (2) invoke the
envelope editor to change values in the workspace; and (3) save the workspace at any time, especially before
you exit NyquistIDE. If you follow these steps, envelopes will be preserved from session to session, and the

v 3.24 24

Nyquist Reference Manual Chapter 2. The NyquistIDE Program

entire collection of envelopes will appear in the editor. Be sure to make backups of your workspace.lsp file
along with your other project files.

The envelope editor can create linear and exponential envelopes. Use the Type pull-down menu to select
the type you want. Envelopes can be created using default starting and ending values using pwl or pwe, or
you can specify the initial values using pwlv or pwev. The envelope editor uses pwl or pwe if no point is
explicitly entered as the initial or final point. To create a pwlv or pwev function, create a point and drag it to
the leftmost or rightmost edge of the graphical editing window. You will see the automatically generated
default starting or ending point disappear from the graph.

Exponential envelopes should never decay to zero. If you enter a zero amplitude, you will see that the
envelope remains at zero to the next breakpoint. To get an exponential decay to “silence,” try using an
amplitude of about 0.001 (about -60dB). To enter small values like this, you can type them into the Amplitude
box and click “Update Point.”

The Load button refreshes the editor from data saved in the Nyquist process. Normally, there is no need to
use this because the editor automatically loads data when you open it.

2.7 Equalizer Editor

The Equalizer Editor provides a graphical EQ interface for creating and adjusting equalizers. Unlike the
envelope editor, where you can type any envelope name, equalizers are named eq-0, eq-1, etc., and you
select the equalizer to edit using a pull-down menu. The Set button should be use to record changes.

2.8 UPIC Editor

The UPIC Editor is inspired by the UPIC system by Iannis Xenakis at the Centre d’Edudes de Mathematique
et Automatique Musicales (CEMaMu). The UPIC Editor is accessed by the “Upic Edit” menu item in the
“Window” menu of the NyquistIDE. Once opened, you can draw pitch contours in the main panel by pressing
the left mouse button and dragging with the mouse down. Contours represent tones in a frequency vs. time
coordinate system. Any contour can be deleted by right-clicking (or shift-clicking on an Apple computer) to
select the contour (indicated by the color red), and typing the Delete key.

A collection of contours can be saved to a file and later retrieved using the items in the File menu (use the
File menu in the UPIC Editor window, not in the main NyquistIDE window.) The file is a SAL program in
a special format that can be parsed by the UPIC Editor. The file can also be loaded into Nyquist using the
File:Load menu item, or by executing a load command in Nyquist.

The panel at the top of the editor offers control over various parameters. The Name box is a Nyquist variable
name. This name takes effect when you save a file from the UPIC Editor. The variable name is stored in the
file so that when a UPIC Editor-generated file is loaded into Nyquist, the data is assigned to this variable
name. The data is a list of contours, where each contour specifies a waveform, an envelope, and a list of
time-frequency coordinates.

v 3.24 25

Nyquist Reference Manual Chapter 2. The NyquistIDE Program

The next item in the panel is the Waveform box. The Waveform box names a waveform for a contour. Default
waveforms are sinusoid, triangle, and sawtooth, but you can type in your own names. The currently selected
waveform is stored with the contour when it is created (entered by drawing). You cannot change or edit the
waveform name associated with a contour once the contour is created, but you can always delete the contour
and replace it. The Envelope box names an envelope for a contour. The envelope names a Nyquist function.
The default, upic-env is a trapezoid shape with an onset time and offset time of 10ms. As with waveforms,
the envelope is stored with each contour when the contour is created and cannot be edited.

The Stop Time box gives the duration of the drawing area in seconds. The Min Freq box gives the minimum
frequency (at the bottom of the drawing area), and the Max Freq box gives the maximum frequency (at the top
of the drawing area). The vertical frequency axis can use a linear scale corresponding to frequency in Hertz
or a logarithmic scale corresponding to semitones. The “linear” checkbox selects the linear scale. When any
of these parameters (described in this paragraph and delimited by the border labeled “Range” on the control
panel) is changed, you must press the Update Range button for the change to take effect.

The Background menu lets you display a grid that indicates pitch locations. The “C’s” item draws a line at C
in every visible octave. E.g. middle C is about 260 Hz, so a reference line will be drawn near 260 Hz. Lines
will be drawn around 130 Hz (an octave below middle C), and around 520 Hz (an octave above middle C),
etc. The “GrandStaff” menu item draws reference lines for each line of the grand staff commonly used for
piano music. The pitches are G2, B2, D3, F3, A3, E4, G4, B4, D5, and F5. Finally, you can load a picture
using the Background:Load Picture... menu item. Then, the Background:Show Picture menu item toggles
whether the picture is displayed or not. This feature allows you to trace an image. (For example, see the
Sonic Self-Portrait at http://www.cs.cmu.edu/~rbd.) You may wish to use an image editor to lighten the
image so that superimposed contours will be more visible.

Each change to the Range data, background choice, and each entry of a contour is an action that you can
undo or redo with the Undo and Redo buttons.

To convert UPIC data into sound, first load upic.sal and load a file generated by the UPIC Editor. Now,
suppose the variable name used is upicdata. You can play the data by writing

play upic(upicdata)

If you created your own names for waveforms or envelopes, you must be sure that these exist before calling
the upic function. Each waveform must be the name of a variable which is set to a Nyquist wave table. (See
Section 1.7.1 for information on how to create a wave table.) Also, each envelope must name a function with
no parameters that will return an amplitude envelope. The following is the built-in definition for upic-env:

define function upic-env()
return env(0.01, 0.01, 0.01, 1, 1, 1)

To make a custom envelope function named upic-smooth with a 0.2 second attack and a 0.3 second decay,
you could write:

define function upic-smooth()
return env(0.2, 0.01, 0.3, 1, 1, 1)

v 3.24 26

3 Behavioral Abstraction

In Nyquist, all functions are subject to transformations. You can think of transformations as additional
parameters to every function, and functions are free to use these additional parameters in any way. The set of
transformation parameters is captured in what is referred to as the transformation environment. (Note that the
term environment is heavily overloaded in computer science. This is yet another usage of the term.)

Behavioral abstraction is the ability of functions to adapt their behavior to the transformation environment.
This environment may contain certain abstract notions, such as loudness, stretching a sound in time, etc.
These notions will mean different things to different functions. For example, an oscillator should produce
more periods of oscillation in order to stretch its output. An envelope, on the other hand, might only change
the duration of the sustain portion of the envelope in order to stretch. Stretching a sample could mean
resampling it to change its duration by the appropriate amount.

Thus, transformations in Nyquist are not simply operations on signals. For example, if I want to stretch a
note, it does not make sense to compute the note first and then stretch the signal. Doing so would cause a
drop in the pitch. Instead, a transformation modifies the transformation environment in which the note is
computed. Think of transformations as making requests to functions. It is up to the function to carry out
the request. Since the function is always in complete control, it is possible to perform transformations with
“intelligence;” that is, the function can perform an appropriate transformation, such as maintaining the desired
pitch and stretching only the ”sustain” portion of an envelope to obtain a longer note.

3.1 The Environment

The transformation environment consists of a set of special variables. These variables should not be read
directly and should never be set directly by the programmer. Instead, there are functions to read them, and
they are automatically set and restored by transformation operators, which will be described below.

The transformation environment consists of the following elements. Although each element has a “standard
interpretation,” the designer of an instrument or the composer of a complex behavior is free to interpret the
environment in any way. For example, a change in *loud* may change timbre more than amplitude, and
transpose may be ignored by percussion instruments:

27

Nyquist Reference Manual Chapter 3. Behavioral Abstraction

warp
Time transformation, including time shift, time stretch, and continuous time warp. The value of
warp is interpreted as a function from logical (local score) time to physical (global real) time. Do
not access *warp* directly. Instead, use local-to-global(t) to convert from a logical (local)
time to real (global) time. Most often, you will call local-to-global(0). Several transformation
operators operate on *warp*, including at (@), stretch (~), and warp. See also get-duration() and
get-warp().

loud
Loudness, expressed in decibels. The default (nominal) loudness is 0.0 dB (no change). Do not access
loud directly. Instead, use get-loud() to get the current value of *loud* and either loud or
loud-abs to modify it.

transpose
Pitch transposition, expressed in semitones. (Default: 0.0). Do not access *transpose* directly.
Instead, use get-transpose() to get the current value of *transpose* and either transpose or
transpose-abs to modify it.

sustain
The “sustain,” “articulation,” “duty factor,” or amount by which to separate or overlap sequential notes.
For example, staccato might be expressed with a *sustain* of 0.5, while very legato playing might be
expressed with a *sustain* of 1.2. Specifically, *sustain* stretches the duration of notes (sustain)
without affecting the inter-onset time (the rhythm). Do not access *sustain* directly. Instead, use
get-sustain() to get the current value of *sustain* and either sustain or sustain-abs to modify
it.

start
Start time of a clipping region. Note: unlike the previous elements of the environment, *start* has
a precise interpretation: no sound should be generated before *start*. This is implemented in all
the low-level sound functions, so it can generally be ignored. You can read *start* directly, but use
extract or extract-abs to modify it. Note 2: Due to some internal confusion between the specified
starting time and the actual starting time of a signal after clipping, *start* is not fully implemented.

stop
Stop time of clipping region. By analogy to *start*, no sound should be generated after this time.
start and *stop* allow a composer to preview a small section of a work without computing it
from beginning to end. You can read *stop* directly, but use extract or extract-abs to modify it.
Note: Due to some internal confusion between the specified starting time and the actual starting time
of a signal after clipping, *stop* is not fully implemented.

control-srate
Sample rate of control signals. This environment element provides the default sample rate for control
signals. There is no formal distinction between a control signal and an audio signal. You can read
control-srate directly, but use control-srate or control-srate-abs to modify it.

v 3.24 28

Nyquist Reference Manual Chapter 3. Behavioral Abstraction

sound-srate
Sample rate of musical sounds. This environment element provides the default sample rate for musical
sounds. You can read *sound-srate* directly, but use sound-srate or sound-srate-abs to modify
it.

3.2 Sequential Behavior

Previous examples have shown the use of seq, the sequential behavior operator. We can now explain seq in
terms of transformations. Consider the simple expression:

play seq(my-note(c4, q), my-note(d4, i))

The idea is to create the first note at time 0, and to start the next note when the first one finishes. This is all
accomplished by manipulating the environment. In particular, *warp* is modified so that what is locally time
0 for the second note is transformed, or warped, to the logical stop time of the first note.

One way to understand this in detail is to imagine how it might be executed: first, *warp* is set to an initial
value that has no effect on time, and my-note(c4, q) is evaluated. A sound is returned and saved. The
sound has an ending time, which in this case will be 1.0 because the duration q is 1.0. This ending time, 1.0,
is used to construct a new *warp* that has the effect of shifting time by 1.0. The second note is evaluated,
and will start at time 1. The sound that is returned is now added to the first sound to form a composite sound,
whose duration will be 2.0. *warp* is restored to its initial value.

Notice that the semantics of seq can be expressed in terms of transformations. To generalize, the operational
rule for seq is: evaluate the first behavior according to the current *warp*. Evaluate each successive behavior
with *warp* modified to shift the new note’s starting time to the ending time of the previous behavior. Restore
warp to its original value and return a sound which is the sum of the results.

In the Nyquist implementation, audio samples are only computed when they are needed, and the second part
of the seq is not evaluated until the ending time (called the logical stop time) of the first part. It is still the
case that when the second part is evaluated, it will see *warp* bound to the ending time of the first part.

A language detail: Even though Nyquist defers evaluation of the second part of the seq, the expression
can reference variables according to ordinary Lisp/SAL scope rules. This is because the seq captures the
expression in a closure, which retains all of the variable bindings.

3.3 Simultaneous Behavior

Another operator is sim, which invokes multiple behaviors at the same time. For example,

play 0.5 * sim(my-note(c4, q), my-note(d4, i))

v 3.24 29

Nyquist Reference Manual Chapter 3. Behavioral Abstraction

will play both notes starting at the same time.

The operational rule for sim is: evaluate each behavior at the current *warp* and return the sum of the results.
(In SAL, the sim function applied to sounds is equivalent to adding them with the infix + operator. The
following section illustrates two concepts: first, a sound is not a behavior, and second, the sim operator and
the at transformation can be used to place sounds in time.

3.4 Sounds vs. Behaviors

The following example loads a sound from a file in the current directory and stores it in a-snd:
; load a sound
;
set a-snd = s-read(strcat(current-path(), "demo-snd.aiff"))

; play it
;
play a-snd

One might then be tempted to write the following:

play seq(a-snd, a-snd) ; WRONG!
play seq(a-snd, a-snd @ 3) ; ALSO WRONG!

Why is this wrong? Recall that seq works by modifying *warp*, not by operating on sounds. So, seq will
proceed by evaluating a-snd with different values of *warp*. However, the result of evaluating a-snd (a
variable) is always the same sound, regardless of the environment; in both of these cases, the second a-snd
should start at time 0.0, just like the first. After the first sound ends, Nyquist is unable to “back up” to time
zero, so in fact, this will play two sounds in sequence, but that is a result of an implementation detail rather
than correct program execution. The second case emphasizes this: Nyquist will return a sound duration of
only 2 seconds because the @ transform does not apply to a sound. In fact, a future version of Nyquist might
(correctly) stop and report an error when it detects that the second sound in the sequence has a real start time
that is before the requested one.

How then do we obtain a sequence of two sounds properly? What we really need here is a behavior that
transforms a given sound according to the current transformation environment. That job is performed by cue.
For example, the following will behave as expected, producing a sequence of two sounds:

play seq(cue(a-snd), cue(a-snd)) ; CORRECT!
play seq(cue(a-snd), cue(a-snd) @ 3) ; CORRECT! Duration = 2 seconds

These examples are correct because the second cue expressions will shift the sound stored in a-snd to start
at the desired times.

The lesson here is very important: sounds are not behaviors! Behaviors are computations that generate sounds
according to the transformation environment. Once a sound has been generated, it can be stored, copied,
added to other sounds, and used in many other operations, but sounds are not subject to transformations. To

v 3.24 30

Nyquist Reference Manual Chapter 3. Behavioral Abstraction

transform a sound, use cue, sound, or control. The differences between these operations are discussed
later. For now, here is a “cue sheet” style score that plays 4 copies of a-snd:

; use sim and at to place sounds in time
;
play sim(cue(a-snd) @ 0.0,

cue(a-snd) @ 0.7,
cue(a-snd) @ 1.0,
cue(a-snd) @ 1.2)

3.5 The At Transformation

The second concept introduced by the previous example is the @ operation, which shifts the *warp* component
of the environment. For example,

cue(a-snd) @ 0.7

can be explained operationally as follows: modify *warp* by shifting it by 0.7 and evaluate cue(a-snd).
Return the resulting sound after restoring *warp* to its original value. Notice how @ is used inside a sim
construct to locate copies of a-snd in time. This is the standard way to represent a note-list or a cue-sheet in
Nyquist.

This also explains why sounds need to be cue’d in order to be shifted in time or arranged in sequence.
Imagine a different design where sim takes all of its parameters (a set of sounds) and lines them up to start
at the same time. That would make it almost impossible to arrange sounds with different start times. You
might try using @ and write cue(a-snd) @ 0.7, but this expression just creates a particular sound, and we
are assuming that sim aligns all sounds to start together, so this design of sim would “undo” the shift (@)!
This design is no good, so in Nyquist, sim respects the intrinsic starting times of sounds. This creates a
new problem when you want to reuse an existing sound, except you want it to start at a different time. The
solution is the cue operation, which makes a copy of the sound with the starting time determined by the
environment. (This is a virtual copy that avoids memory allocation or actually copying samples.)

3.6 The Stretch Transformation

In addition to At (denoted in SAL by the @ operator, the Stretch transformation is very important. It appeared
in the introduction, and it is denoted in SAL by the ~ operator (or in LISP by the stretch special form).
Stretch also operates on the *warp* component of the environment. For example,

osc(c4) ~ 3

does the following: modify *warp*, scaling the degree of "stretch" by 3, and evaluate osc(c4). The osc
behavior uses the stretch factor to determime the duration, so it will return a sound that is 3 seconds long.
Restore *warp* to its original value. Like At, Stretch only affects behaviors. a-snd ~ 10 is equivalent to

v 3.24 31

Nyquist Reference Manual Chapter 3. Behavioral Abstraction

a-snd because a-snd is a sound, not a behavior. Behaviors are functions that compute sounds according to
the environment and return a sound.

3.7 Nested Transformations

Transformations can be combined using nested expressions. For example,

sim(cue(a-snd),
loud(6.0, cue(a-snd) @ 3))

scales the amplitude as well as shifts the second entrance of a-snd.

Why use loud instead of simply multiplying a-snd by some scale factor? Using loud gives the behavior the
chance to implement the abstract property loudness in an appropriate way, e.g. by including timbral changes.
In this case, the behavior is cue, which implements loudness by simple amplitude scaling, so the result is
equivalent to multiplication by db-to-linear(6.0).

Transformations can also be applied to groups of behaviors:

loud(6.0, sim(cue(a-snd) @ 0.0,
cue(a-snd) @ 0.7))

3.8 Defining Behaviors

Groups of behaviors can be named using define (we already saw this in the definitions of my-note and
env-note). Here is another example of a behavior definition and its use. The definition has one parameter:

define function snds(dly)
return sim(cue(a-snd) @ 0.0,

cue(a-snd) @ 0.7,
cue(a-snd) @ 1.0,
cue(a-snd) @ (1.2 + dly))

play snds(0.1)
play loud(0.25, snds(0.3) ~ 0.9)

In the last line, snds is transformed: the transformations will apply to the cue behaviors within snds. The
loud transformation will scale the sounds by 0.25, and the stretch (~) will apply to the shift (@) amounts
0.0, 0.7, 1.0, and 1.2 + dly. The sounds themselves (copies of a-snd) will not be stretched because cue
never stretches sounds.

Section 7.3 describes the full set of transformations.

v 3.24 32

Nyquist Reference Manual Chapter 3. Behavioral Abstraction

3.9 Overriding Default Transformations

In Nyquist, behaviors are the important abstraction mechanism. A behavior represents a class of related
functions or sounds. For example, a behavior can represent a musical note. When a note is stretched, it
usually means that the tone sustains for more oscillations, but if the “note” is a drum roll, the note sustains by
more repetitions of the component drum strokes. The concept of sustain is so fundamental that we do not
really think of different note durations as being different instances of an abstract behavior, but in a music
programming language, we need a way to model these abtract behaviors. As the tone and drum roll examples
show, there is no one right way to “stretch,” so the language must allow users to define exactly what it means
to stretch. By extension, the Nyquist programmer can define how all of the transformations affect different
behaviors.

To make programming easier, almost all Nyquist sounds are constructed from primitive behaviors that obey
the environment in obvious ways: Stretch transformations make things longer and At transformations shift
things in time. But sometimes you have to override the default behaviors. Maybe the attack phase of an
envelope should not stretch when the note is stretched, or maybe when you stretch a trill, you should get
more notes rather than a slower trill.

To override default behaviors, you almost always follow the same programming pattern: first, capture the
environment in a local variable; then, use one of the absolute transformations to “turn off” the environment’s
effect and compute the sound as desired. The following example creates a very simple envelope with a fixed
rise time to illustrate the technique.

define function two-phase-env(rise-time)
begin

with dur = get-duration(1)
return pwl(rise-time, 1, dur) ~~ 1.0

end
To “capture the environment in a local variable,” a with construct is used to create the local variable dur
and set it to the value of get-duration(1), which answers the question: “If I apply use the environment to
stretch something whose nominal duration is 1, what is the resulting duration?” (Since time transformations
can involve continuous time deformations, this question is not as simple as it may sound, so please use the
provided function rather than peeking inside the *warp* structure and trying to do it yourself.) Next, we
“turn off” stretching using the stretch-abs form, which in SAL is denoted by the ~~ operator. Finally, we
are ready to compute the envelope using pwl. Here, we use absolute durations. The first breakpoint is at
rise-time, so the attack time is given by the rise-time parameter. The pwl decays back to zero at time
dur, so the overall duration matches the duration expected from the environment encountered by this instance
of two-phase-env. Note, however, that since the pwl is evaluated in a different environment established
by ~~, it is not stretched (or perhaps more accurately, it is stretched by 1.0). This is good because it means
rise-time will not be stretched, but we must be careful to extend the envelope to dur so that it has the
expected duration.

v 3.24 33

Nyquist Reference Manual Chapter 3. Behavioral Abstraction

3.10 Sampling Rates

The global environment contains *sound-srate* and *control-srate*, which determine the sample rates
of sounds and control signals. These can be overridden at any point by the transformations sound-srate-abs
and control-srate-abs; for example,

sound-srate-abs(44100.0, osc(c4))

will compute a tone using a 44.1Khz sample rate even if the default rate is set to something different.

As with other components of the environment, you should never change *sound-srate* or
control-srate directly. The global environment is determined by two additional variables:
default-sound-srate and *default-control-srate*. You can add lines like the following to your
init.lsp file to change the default global environment:

(setf *default-sound-srate* 44100.0)
(setf *default-control-srate* 1102.5)

You can also do this using preferences in NyquistIDE. If you have already started Nyquist and want to change
the defaults, the preferences or the following functions can be used:

exec set-control-srate(1102.5)
exec set-sound-srate(22050.0)

These modify the default values and reinitialize the Nyquist environment.

v 3.24 34

4 Continuous Transformations and Time Warps

Nyquist transformations were discussed in the previous chapter, but all of the examples used scalar values.
For example, we saw the loud transformation used to change loudness by a fixed amount. What if we want
to specify a crescendo, where the loudness changes gradually over time?

It turns out that all transformations can accept signals as well as numbers, so transformations can be continuous
over time. This raises some interesting questions about how to interpret continuous transformations. Should
a loudness transformation apply to the internal details of a note or only affect the initial loudness? It might
seem unnatural for a decaying piano note to perform a crescendo. On the other hand, a sustained trumpet
sound should probably crescendo continuously. In the case of time warping (tempo changes), it might be
best for a drum roll to maintain a steady rate, a trill may or may not change rates with tempo, and a run of
sixteenth notes will surely change its rate.

These issues are complex, and Nyquist cannot hope to automatically do the right thing in all cases. However,
the concept of behavioral abstraction provides an elegant solution. Since transformations merely modify
the environment, behaviors are not forced to implement any particular style of transformation. Nyquist is
designed so that the default transformation is usually the right one, but it is always possible to override the
default transformation to achieve a particular effect.

4.1 Simple Transformations

The “simple” transformations affect some parameter, but have no effect on time itself. The simple transforma-
tions that support continuously changing parameters are: sustain, loud, and transpose.

As a first example, Let us use transpose to create a chromatic scale. First define a sequence of tones at a
steady pitch. The seqrep “function” works like seq except that it creates copies of a sound by evaluating an
expression multiple times. Here, i takes on 16 values from 0 to 15, and the expression for the sound could
potentially use i. Technically, seqrep is not really a function but an abbreviation for a special kind of loop
construct.

define function tone-seq()
return seqrep(i, 16,

osc-note(c4) ~ 0.25)
Now define a linearly increasing ramp to serve as a transposition function:

35

Nyquist Reference Manual Chapter 4. Continuous Transformations and Time Warps

define function pitch-rise()
return sustain-abs(1.0, 16 * ramp() ~ 4)

This ramp has a duration of 4 seconds, and over that interval it rises from 0 to 16 (corresponding to the
16 semitones we want to transpose). The ramp is inside a sustain-abs transformation, which prevents a
sustain transformation from having any effect on the ramp. (One of the drawbacks of behavioral abstraction
is that built-in behaviors sometimes do the wrong thing implicitly, requiring some explicit correction to turn
off the unwanted transformation.) Now, pitch-rise is used to transpose tone-seq:

define function chromatic-scale()
return transpose(pitch-rise(), tone-seq())

Similar transformations can be constructed to change the sustain or “duty factor” of notes and their loudness.
The following expression plays the chromatic-scale behavior with increasing note durations. The rhythm
is unchanged, but the note length changes from staccato to legato:

play sustain((0.2 + ramp()) ~ 4,
chromatic-scale())

The resulting sustain function will ramp from 0.2 to 1.2. A sustain of 1.2 denotes a 20 percent overlap between
notes. The sum has a stretch factor of 4, so it will extend over the 4 second duration of chromatic-scale.

If you try this, you will discover that the chromatic-scale no longer plays a chromatic scale. You will hear
the first 4 notes going up in intervals of 5 semitones (perfect fourths) followed by repeated pitches. What
is happening is that the sustain operation applies to pitch-rise in addition to tone-seq, so now the 4s
ramp from 0 to 16 becomes a 0.8s ramp. To fix this problem, we need to shield pitch-rise from the effect
of sustain using the sustain-abs transformation. Here is a corrected version of chromatic-scale:

define function chromatic-scale()
return transpose(sustain-abs(1, pitch-rise()), tone-seq())

What do these transformations mean? How did the system know to produce a pitch rise rather than a
continuous glissando? This all relates to the idea of behavioral abstraction. It is possible to design sounds that
do glissando under the transpose transform, and you can even make sounds that ignore transpose altogether.
As explained in Chapter 3, the transformations modify the environment, and behaviors can reference the
environment to determine what signals to generate. All built-in functions, such as osc, have a default
behavior.

The default behavior for sound primitives under transpose, sustain, and loud transformations is to sample
the environment at the beginning of the note. Transposition is not quantized to semitones or any other scale,
but in our example, we arranged for the transposition to work out to integer numbers of semitones, so we
obtained a chromatic scale anyway.

Transposition only applies to the oscillator and sampling primitives osc, partial, sampler, sine, fmosc,
and amosc. Sustain applies to osc, env, ramp, and pwl. (Note that partial, amosc, and fmosc get their
durations from the modulation signal, so they may indirectly depend upon the sustain.) Loud applies to osc,
sampler, cue, sound, fmosc, and amosc. (But not pwl or env.)

v 3.24 36

Nyquist Reference Manual Chapter 4. Continuous Transformations and Time Warps

4.2 Time Warps

The most interesting transformations have to do with transforming time itself. The warp transformation
provides a mapping function from logical (score) time to real time. The slope of this function tells us how
many units of real time are covered by one unit of score time. This is proportional to 1/tempo. A higher slope
corresponds to a slower tempo.

To demonstrate warp, we will define a time warp function using pwl:

define function warper()
return pwl(0.25, .4, .75, .6, 1.0, 1.0, 2.0, 2.0, 2.0)

This function has an initial slope of .4/.25 = 1.6. It may be easier to think in reciprocal terms: the initial
tempo is .25/.4 = .625. Between 0.25 and 0.75, the tempo is .5/.2 = 2.5, and from 0.75 to 1.0, the tempo is
again .625. It is important for warp functions to completely span the interval of interest (in our case it will be
0 to 1), and it is safest to extend a bit beyond the interval, so we extend the function on to 2.0 with a tempo of
1.0. Next, we stretch and scale the warper function to cover 4 seconds of score time and 4 seconds of real
time:

define function warp4()
return 4 * warper() ~ 4

Figure 4.1 shows a plot of this warp function. Now, we can warp the tempo of the tone-seq defined above
using warp4:

play warp(warp4(), tone-seq())

Figure 4.2 shows the result graphically. Notice that the durations of the tones are warped as well as their
onsets. Envelopes are not shown in detail in the figure. Because of the way env is defined, the tones will
have constant attack and decay times, and the sustain will be adjusted to fit the available time.

4.3 Abstract Time Warps

We have seen a number of examples where the default behavior did the “right thing,” making the code
straightforward. This is not always the case. Suppose we want to warp the note onsets but not the durations.
We will first look at an incorrect solution and discuss the error. Then we will look at a slightly more complex
(but correct) solution.

The default behavior for most Nyquist built-in functions is to sample the time warp function at the nominal
starting and ending score times of the primitive. For many built-in functions, including osc, the starting
logical time is 0 and the ending logical time is 1, so the time warp function is evaluated at these points to
yield real starting and stopping times, say 15.23 and 16.79. The difference (e.g. 1.56) becomes the signal
duration, and there is no internal time warping. The pwl function behaves a little differently. Here, each
breakpoint is warped individually, but the resulting function is linear between the breakpoints.

v 3.24 37

Nyquist Reference Manual Chapter 4. Continuous Transformations and Time Warps

)

Figure 4.1: The result of (warp4), intended to map 4 seconds of score time into 4 seconds of real time. The
function extends beyond 4 seconds (the dashed lines) to make sure the function is well-defined at location (4,
4). Nyquist sounds are ordinarily open on the right.

Figure 4.2: When (warp4) is applied to (tone-seq-2), the note onsets and durations are warped.

v 3.24 38

Nyquist Reference Manual Chapter 4. Continuous Transformations and Time Warps

Figure 4.3: When (warp4) is applied to (tone-seq-3), the note onsets are warped, but not the duration,
which remains a constant 0.25 seconds. In the fast middle section, this causes notes to overlap. Nyquist will
sum (mix) them.

A consequence of the default behavior is that notes stretch when the tempo slows down. Returning to our
example, recall that we want to warp only the note onset times and not the duration. One would think that the
following would work:

define function tone-seq-2 ()
return seqrep(i, 16,

osc-note(c4) ~~ 0.25)

play warp(warp4(), tone-seq-2())

Here, we have redefined tone-seq, renaming it to tone-seq-2 and changing the stretch (~) to absolute
stretch (~~). The absolute stretch should override the warp function and produce a fixed duration.

If you play the example, you will hear steady sixteenths and no tempo changes. What is wrong? In a sense,
the “fix” works too well. Recall that sequences (including seqrep) determine the starting time of the next
note from the logical stop time of the previous sound in the sequence. When we forced the stretch to 0.25, we
also forced the logical stop time to 0.25 real seconds from the beginning, so every note starts 0.25 seconds
after the previous one, resulting in a constant tempo.

Now let us design a proper solution. The trick is to use absolute stretch (~~) as before to control the duration,
but to restore the logical stop time to a value that results in the proper inter-onset time interval:

define function tone-seq-3()
return seqrep(i, 16,

set-logical-stop(osc-note(c4) ~~ 0.25, 0.25))

play warp(warp4(), tone-seq-3())

Notice the addition of set-logical-stop enclosing the absolute stretch (~~) expression to set the logical
stop time. A possible point of confusion here is that the logical stop time is set to 0.25, the same number
given to ~~! How does setting the logical stop time to 0.25 result in a tempo change? When used within a
warp transformation, the second argument to set-logical-stop refers to score time rather than real time.
Therefore, the score duration of 0.25 is warped into real time, producing tempo changes according to the
enviroment. Figure 4.3 illustrates the result graphically.

v 3.24 39

Nyquist Reference Manual Chapter 4. Continuous Transformations and Time Warps

4.4 Nested Transformations

Transformations can be nested. In particular, a simple transformation such as transpose can be nested within a
time warp transformation. Suppose we want to warp our chromatic scale example with the warp4 time warp
function. As in the previous section, we will show an erroneous simple solution followed by a correct one.

The simplest approach to a nested transformation is to simply combine them and hope for the best:

play warp(warp4(),
transpose(pitch-rise(), tone-seq()))

This example will not work the way you might expect. Here is why: the warp transformation applies to the
(pitch-rise) expression, which is implemented using the ramp function. The default behavior of ramp is
to interpolate linearly (in real time) between two points. Thus, the “warped” ramp function will not truly
reflect the internal details of the intended time warp. When the notes are moving faster, they will be closer
together in pitch, and the result is not chromatic. What we need is a way to properly compose the warp and
ramp functions. If we continuously warp the ramp function in the same way as the note sequence, a chromatic
scale should be obtained. This will lead to a correct solution.

Here is the modified code to properly warp a transposed sequence. Note that the original sequence is used
without modification. The only complication is producing a properly warped transposition function:

play warp(warp4(),
transpose(

control-warp(get-warp(),
warp-abs(nil, pitch-rise())),

tone-seq()))

To properly warp the pitch-rise transposition function, we use control-warp, which applies a warp
function to a function of score time, yielding a function of real time. We need to pass the desired function to
control-warp, so we fetch it from the environment with get-warp(). Finally, since the warping is done
here, we want to shield the pitch-rise expression from further warping, so we enclose it in warp-abs(nil,
...).

An aside: This last example illustrates a difficulty in the design of Nyquist. To support behavioral abstraction
universally, we must rely upon behaviors to “do the right thing.” In this case, we would like the ramp function
to warp continuously according to the environment. But this is inefficient and unnecessary in many other
cases where ramp and especially pwl are used. (pwl warps its breakpoints, but still interpolates linearly
between them.) Also, if the default behavior of primitives is to warp in a continuous manner, this makes it
difficult to build custom abstract behaviors. The final vote is not in.

v 3.24 40

5 More Examples

This chapter explores Nyquist through additional examples. The reader may wish to browse through these
and move on to Chapter 7, which is a reference section describing Nyquist functions.

5.1 Stretching Sampled Sounds

This example illustrates how to stretch a sound, resampling it in the process. Because sounds in Nyquist
are values that contain the sample rate, start time, etc., use sound to convert a sound into a behavior that
can be stretched, e.g. sound(a-snd). This behavior stretches a sound according to the stretch factor in the
environment, set using stretch. For accuracy and efficiency, Nyquist does not resample a stretched sound
until absolutely necessary. The force-srate function is used to resample the result so that we end up with a
“normal” sample rate that is playable on ordinary sound cards.

; if a-snd is not loaded, load sound sample:
;
if not(boundp(quote(a-snd))) then

set a-snd = s-read("demo-snd.aiff")

; the SOUND operator shifts, stretches, clips and scales
; a sound according to the current environment
;
define function ex23()

play force-srate(*default-sound-srate*, sound(a-snd) ~ 3.0)

define function down()
return force-srate(*default-sound-srate*,

seq(sound(a-snd) ~ 0.2,
sound(a-snd) ~ 0.3,
sound(a-snd) ~ 0.4,
sound(a-snd) ~ 0.6))

play down()

41

Nyquist Reference Manual Chapter 5. More Examples

; that was so much fun, let's go back up:
;
define function up()

return force-srate(*default-sound-srate*,
seq(sound(a-snd) ~ 0.5,

sound(a-snd) ~ 0.4,
sound(a-snd) ~ 0.3,
sound(a-snd) ~ 0.2))

; and write a sequence
;
play seq(down(), up(), down())

Notice the use of the sound behavior as opposed to cue. The cue behavior shifts and scales its sound
according to *warp* and *loud*, but it does not change the duration or resample the sound. In contrast,
sound not only shifts and scales its sound, but it also stretches it by resampling or changing the effective
sample rate according to *warp*. If *warp* is a continuous warping function, then the sound will be
stretched by time-varying amounts. (The *transpose* element of the environment is ignored by both cue
and sound.)

Note: sound may use linear interpolation rather than a high-quality resampling algorithm. In some cases,
this may introduce errors audible as noise. Use resample (see Section 7.2.2) for high-quality interpolation.

In the functions up and down, the *warp* is set by stretch (~), which simply scales time by a constant scale
factor. In this case, sound can “stretch” the signal simply by changing the sample rate without any further
computation. When seq tries to add the signals together, it discovers the sample rates do not match and uses
linear interpolation to adjust all sample rates to match that of the first sound in the sequence. The result
of seq is then converted using force-srate to convert the sample rate, again using linear interpolation.
It would be slightly better, from a computational standpoint, to apply force-srate individually to each
stretched sound rather than applying force-srate after seq.

Notice that the overall duration of sound(a-snd) ~ 0.5 will be half the duration of a-snd.

5.2 Saving Sound Files

So far, we have used the play command to play a sound. The play command works by writing a sound to a
file while simultaneously playing it. This can be done one step at a time, and it is often convenient to save a
sound to a particular file for later use:

; write the sample to a file,
; the file name can be any Unix filename. Prepending a "./" tells
; s-save to not prepend *default-sf-dir*
;
exec s-save(a-snd, 1000000000, "./a-snd-file.snd")

v 3.24 42

Nyquist Reference Manual Chapter 5. More Examples

; play a file
; play command normally expects an expression for a sound
; but if you pass it a string, it will open and play a
; sound file
play "./a-snd-file.snd"

; delete the file (do this with care!)
; only works under Unix (not Windows)
exec system("rm ./a-snd-file.snd")

; now let's do it using a variable as the file name
;
set my-sound-file = "./a-snd-file.snd"
exec s-save(a-snd, 1000000000, my-sound-file)

; play-file is a function to open and play a sound file
exec play-file(my-sound-file)
exec system(strcat("rm ", my-sound-file))

This example shows how s-save can be used to save a sound to a file.

The last line of this example shows how the system function can be used to invoke Unix shell commands,
such as a command to play a file or remove it. Finally, notice that strcat can be used to concatenate
a command name to a file name to create a complete command that is then passed to system. (This is
convenient if the sound file name is stored in a parameter or variable.)

5.3 Memory Space and Normalization

Sound samples take up lots of memory, and often, there is not enough primary (RAM) memory to hold a
complete composition. For this reason, Nyquist can compute sounds incrementally, saving the final result on
disk. However, Nyquist can also save sounds in memory so that they can be reused efficiently. In general, if a
sound is saved in a global variable, memory will be allocated as needed to save and reuse it.

The standard way to compute a sound and write it to disk is to pass an expression to the play command:

play my-composition()

Often it is nice to normalize sounds so that they use the full available dynamic range of 16 bits. Nyquist
has an automated facility to help with normalization. By default, Nyquist computes up to 1 million samples
(using about 4MB of memory) looking for the peak. The entire sound is normalized so that this peak will
not cause clipping. If the sound has less than 1 million samples, or if the first million samples are a good
indication of the overall peak, then the signal will not clip.

With this automated normalization technique, you can choose the desired peak value by set-
ting *autonorm-target*, which is initialized to 0.9. The number of samples examined is
autonorm-max-samples, initially 1 million. You can turn this feature off by executing:

v 3.24 43

Nyquist Reference Manual Chapter 5. More Examples

exec autonorm-off()

and turn it back on by typing:

exec autonorm-on()

This normalization technique is in effect when *autonorm-type* is quote(lookahead), which is the
default.

An alternative normalization method uses the peak value from the previous call to play. After playing a file,
Nyquist can adjust an internal scale factor so that if you play the same file again, the peak amplitude will
be *autonorm-target*, which is initialized to 0.9. This can be useful if you want to carefully normalize
a big sound that does not have its peak near the beginning. To select this style of normalization, set
autonorm-type to the (quoted) atom quote(previous).

You can also create your own normalization method in Nyquist. The peak function computes the maximum
value of a sound. The peak value is also returned from the play macro. You can normalize in memory if you
have enough memory; otherwise you can compute the sound twice. The two techniques are illustrated here:

; normalize in memory. First, assign the sound to a variable so
; it will be retained:
set mysound = sim(osc(c4), osc(c5))
; now compute the maximum value (ny:all is 1 giga-samples, you may want a
; smaller constant if you have less than 4GB of memory:
set mymax = snd-max(mysound, NY:ALL)
display "Computed max", mymax
; now write out and play the sound from memory with a scale factor:
play mysound * (0.9 / mymax)

; if you don't have space in memory, here's how to do it:
define function myscore()

return sim(osc(c4), osc(c5))
; compute the maximum:
set mymax = snd-max(list(quote(myscore)), NY:ALL)
display "Computed max", mymax
; now we know the max, but we don't have a the sound (it was garbage
; collected and never existed all at once in memory). Compute the sound
; again, this time with a scale factor:
play myscore() * (0.9 / mymax)

You can also write a sound as a floating point file. This file can then be converted to 16-bit integer with
the proper scaling applied. If a long computation was involved, it should be much faster to scale the saved
sound file than to recompute the sound from scratch. Although not implemented yet in Nyquist, some header
formats can store maximum amplitudes, and some soundfile player programs can rescale floating point files
on the fly, allowing normalized soundfile playback without an extra normalization pass (but at a cost of twice
the disk space of 16-bit samples). You can use Nyquist to rescale a floating point file and convert it to 16-bit
samples for playback.

v 3.24 44

Nyquist Reference Manual Chapter 5. More Examples

5.4 Frequency Modulation

The next example uses the Nyquist frequency modulation behavior fmosc to generate various sounds. The
parameters to fmosc are:

fmosc(pitch , modulator , table , phase)

Note that pitch is the number of half-steps, e.g. c4 has the value of 60 which is middle-C, and phase is in
degrees. Only the first two parameters are required:

; make a short sine tone with no frequency modulation
;
play fmosc(c4, pwl(0.1))

; make a longer sine tone -- note that the duration of
; the modulator determines the duration of the tone
;
play fmosc(c4, pwl(0.5))

In the example above, pwl (for Piece-Wise Linear) is used to generate sounds that are zero for the durations
of 0.1 and 0.5 seconds, respectively. In effect, we are using an FM oscillator with no modulation input, and
the result is a sine tone. The duration of the modulation determines the duration of the generated tone (when
the modulation signal ends, the oscillator stops).

The next example uses a more interesting modulation function, a ramp from zero to C4, expressed in hz.
More explanation of pwl is in order. This operation constructs a piece-wise linear function sampled at the
control-srate. The first breakpoint is always at (0, 0), so the first two parameters give the time and
value of the second breakpoint, the second two parameters give the time and value of the third breakpoint,
and so on. The last breakpoint has a value of 0, so only the time of the last breakpoint is given. In this case,
we want the ramp to end at C4, so we cheat a bit by having the ramp return to zero “almost” instantaneously
between times 0.5 and 0.501.

The pwl behavior always expects an odd number of parameters. The resulting function is shifted and stretched
linearly according to *warp* in the environment. Now, here is the example:

; make a frequency sweep of one octave; the piece-wise linear function
; sweeps from 0 to (step-to-hz c4) because, when added to the c4
; fundamental, this will double the frequency and cause an octave sweep.
;
play fmosc(c4, pwl(0.5, step-to-hz(c4), 0.501))

The same idea can be applied to a non-sinusoidal carrier. Here, we assume that *fm-voice* is predefined
(the next section shows how to define it):

; do the same thing with a non-sine table
;
play fmosc(cs2, pwl(0.5, step-to-hz(cs2), 0.501),

fm-voice, 0.0)

v 3.24 45

Nyquist Reference Manual Chapter 5. More Examples

The next example shows how a function can be used to make a special frequency modulation contour. In this
case the contour generates a sweep from a starting pitch to a destination pitch:

; make a function to give a frequency sweep, starting
; after <delay> seconds, then sweeping from <pitch-1>
; to <pitch-2> in <sweep-time> seconds and then
; holding at <pitch-2> for <hold-time> seconds.
;
define function sweep(delay, pitch-1, sweep-time,

pitch-2, hold-time)
begin

with interval = step-to-hz(pitch-2) - step-to-hz(pitch-1)
return pwl(delay, 0.0,

; sweep from pitch 1 to pitch 2
delay + sweep-time, interval,
; hold until about 1 sample from the end
delay + sweep-time + hold-time - 0.0005,
interval,
; quickly ramp to zero (pwl always does this,
; so make it short)
delay + sweep-time + hold-time)

end

; now try it out
;
play fmosc(cs2, sweep(0.1, cs2, 0.6, gs2, 0.5),

fm-voice, 0.0)
FM can be used for vibrato as well as frequency sweeps. Here, we use the lfo function to generate vibrato.
The lfo operation is similar to osc, except it generates sounds at the *control-srate*, and the parameter
is hz rather than a pitch:

play fmosc(cs2, 10.0 * lfo(6.0), *fm-voice*, 0.0)

What kind of manual would this be without the obligatory FM sound? Here, a sinusoidal modulator (frequency
C4) is multiplied by a slowly increasing ramp from zero to 1000.0.

set modulator = pwl(1.0, 1000.0, 1.0005) *
osc(c4)

; make the sound
play fmosc(c4, modulator)

For more simple examples of FM in Nyquist, see nyquist/lib/warble/warble_tutorial.htm.

v 3.24 46

Nyquist Reference Manual Chapter 5. More Examples

5.5 Building a Wavetable

In Section 1.7.1, we saw how to synthesize a wavetable. A wavetable for osc also can be extracted from any
sound. This is especially interesting if the sound is digitized from some external sound source and loaded
using the s-read function. Recall that a table is a list consisting of a sound, the pitch of that sound, and T
(meaning the sound is periodic).

In the following, a sound is first read from the file demo-snd.nh. Then, the extract function is used to
extract the portion of the sound between 0.110204 and 0.13932 seconds. (These numbers might be obtained
by first plotting the sound and estimating the beginning and end of a period, or by using some software to
look for good zero crossings.) The result of extract becomes the first element of a list. The next element is
the pitch (24.848422), and the last element is T. The list is assigned to *fm-voice*.

if not(boundp(quote(a-snd))) then
set a-snd = s-read("demo-snd.aiff")

set *fm-voice* = list(extract(0.110204, 0.13932, cue(a-snd)),
24.848422,
#T)

The file nyquist/lib/examples.sal contains an extensive example of how to locate zero-crossings, extract a
period, build a waveform, and generate a tone from it. (See ex37 through ex40 in the file.)

5.6 Filter Examples

Nyquist provides a variety of filters. All of these filters take either real numbers or signals as parameters. If
you pass a signal as a filter parameter, the filter coefficients are recomputed at the sample rate of the control
signal. Since filter coefficients are generally expensive to compute, you may want to select filter control
rates carefully. Use control-srate-abs (Section 7.3) to specify the default control sample rate, or use
force-srate (Section 7.2.2) to resample a signal before passing it to a filter.

Before presenting examples, let’s generate some unfiltered white noise:

play noise()

Now low-pass filter the noise with a 1000Hz cutoff:

play lp(noise(), 1000.0)

The high-pass filter is the inverse of the low-pass:

play hp(noise(), 1000.0)

Here is a low-pass filter sweep from 100Hz to 2000Hz:

play lp(noise(), pwl(0.0, 100.0, 1.0, 2000.0, 1.0))

And a high-pass sweep from 50Hz to 4000Hz:

v 3.24 47

Nyquist Reference Manual Chapter 5. More Examples

play hp(noise(), pwl(0.0, 50.0, 1.0, 4000.0, 1.0))

The band-pass filter takes a center frequency and a bandwidth parameter. This example has a 500Hz center
frequency with a 20Hz bandwidth. The scale factor is necessary because, due to the resonant peak of the
filter, the signal amplitude exceeds 1.0:

play reson(10.0 * noise(), 500.0, 20.0, 1)

In the next example, the center frequency is swept from 100 to 1000Hz, using a constant 20Hz bandwidth:

play reson(0.04 * noise(),
pwl(0.0, 200.0, 1.0, 1000.0, 1.0),
20.0)

For another example with explanations, see nyquist/lib/wind/wind_tutorial.htm.

5.7 DSP in Lisp

In almost any signal processing system, the vast majority of computation takes place in the inner loops of
DSP algorithms, and Nyquist is designed so that these time-consuming inner loops are in highly-optimized
machine code rather than relatively slow interpreted lisp code. As a result, Nyquist typically spends 95% of
its time in these inner loops; the overhead of using a Lisp interpreter is negligible.

The drawback is that Nyquist must provide the DSP operations you need, or you are out of luck. When
Nyquist is found lacking, you can either write a new primitive signal operation, or you can perform DSP
in Lisp code. Neither option is recommended for inexperienced programmers. Instructions for extending
Nyquist are given in Appendix A. This section describes the process of writing a new signal processing
function in Lisp.

Before implementing a new DSP function, you should decide which approach is best. First, figure out how
much of the new function can be implemented using existing Nyquist functions. For example, you might
think that a tapped-delay line would require a new function, but in fact, it can be implemented by composing
sound transformations to accomplish delays, scale factors for attenuation, and additions to combine the
intermediate results. This can all be packaged into a new Lisp function, making it easy to use. If the function
relies on built-in DSP primitives, it will execute very efficiently.

Assuming that built-in functions cannot be used, try to define a new operation that will be both simple and
general. Usually, it makes sense to implement only the kernel of what you need, combining it with existing
functions to build a complete instrument or operation. For example, if you want to implement a physical
model that requires a varying breath pressure with noise and vibrato, plan to use Nyquist functions to add a
basic pressure envelope to noise and vibrato signals to come up with a composite pressure signal. Pass that
signal into the physical model rather than synthesizing the envelope, noise, and vibrato within the model.
This not only simplifies the model, but gives you the flexibility to use all of Nyquist’s operations to synthesize
a suitable breath pressure signal.

Having designed the new “kernel” DSP operation that must be implemented, decide whether to use C or
Lisp. (At present, SAL is not a good option because it has no support for object-oriented programming.) To

v 3.24 48

Nyquist Reference Manual Chapter 5. More Examples

use C, you must have a C compiler, the full source code for Nyquist, and you must learn about extending
Nyquist by reading Appendix A. This is the more complex approach, but the result will be very efficient. A C
implementation will deal properly with sounds that are not time-aligned or matched in sample rates. To use
Lisp, you must learn something about the XLISP object system, and the result will be about 50 times slower
than C. Also, it is more difficult to deal with time alignment and differences in sample rates. The remainder
of this section gives an example of a Lisp version of snd-prod to illustrate how to write DSP functions for
Nyquist in Lisp.

The snd-prod function is the low-level multiply routine. It has two sound parameters and returns a sound
which is the product of the two. To keep things simple, we will assume that two sounds to be multiplied have
a matched sample rate and matching start times. The DSP algorithm for each output sample is simply to fetch
a sample from each sound, multiply them, and return the product.

To implement snd-prod in Lisp, three components are required:

1. An object is used to store the two parameter sounds. This object will be called upon to yield samples
of the result sound;

2. Within the object, the snd-fetch routine is used to fetch samples from the two input sounds as needed;

3. The result must be of type SOUND, so snd-fromobject is used to create the result sound.

The combined solution will work as follows: The result is a value of type sound that retains a reference to
the object. When Nyquist needs samples from the sound, it invokes the sound’s “fetch” function, which in
turn sends an XLISP message to the object. The object will use snd-fetch to get a sample from each stored
sound, multiply the samples, and return a result.

Thus the goal is to design an XLISP object that, in response to a :next message will return a proper sequence
of samples. When the sound reaches the termination time, simply return NIL.

The XLISP manual (see Appendix C) describes the object system, but in a very terse style, so this example
will include some explanation of how the object system is used. First, we need to define a class for the objects
that will compute sound products. Every class is a subclass of class class, and you create a subclass by
sending :new to a class.

(setf product-class (send class :new '(s1 s2)))

The parameter ’(s1 s2) says that the new class will have two instance variables, s1 and s2. In other words,
every object which is an instance of class product-class will have its own copy of these two variables.

Next, we will define the :next method for product-class:

(send product-class :answer :next '()
'((let ((f1 (snd-fetch s1))

(f2 (snd-fetch s2)))
(cond ((and f1 f2)

(* f1 f2))
(t nil)))))

v 3.24 49

Nyquist Reference Manual Chapter 5. More Examples

The :answer message is used to insert a new method into our new product-class. The method is described
in three parts: the name (:next), a parameter list (empty in this case), and a list of expressions to be evaluated.
In this case, we fetch samples from s1 and s2. If both are numbers, we return their product. If either is NIL,
we terminate the sound by returning nil.

The :next method assumes that s1 and s2 hold the sounds to be multiplied. These must be installed when
the object is created. Objects are created by sending :new to a class. A new object is created, and any
parameters passed to :new are then sent in a :isnew message to the new object. Here is the :isnew definition
for product-class:

(send product-class :answer :isnew '(p1 p2)
'((setf s1 (snd-copy p1))

(setf s2 (snd-copy p2))))

Take careful note of the use of snd-copy in this initialization. The sounds s1 and s2 are modified when
accessed by snd-fetch in the :next method defined above, but this destroys the illusion that sounds are
immutable values. The solution is to copy the sounds before accessing them; the original sounds are therefore
unchanged. (This copy also takes place implicitly in most Nyquist sound functions.)

To make this code safer for general use, we should add checks that s1 and s2 are sounds with identical
starting times and sample rates; otherwise, an incorrect result might be computed.

Now we are ready to write snd-product, an approximate replacement for snd-prod:

(defun snd-product (s1 s2)
(let (obj)

(setf obj (send product-class :new s1 s2))
(snd-fromobject (snd-t0 s1) (snd-srate s1) obj)))

This code first creates obj, an instance of product-class, to hold s1 and s2. Then, it uses obj to create a
sound using snd-fromobject. This sound is returned from snd-product. Note that in snd-fromobject,
you must also specify the starting time and sample rate as the first two parameters. These are copied from s1,
again assuming that s1 and s2 have matching starting times and sample rates.

Note that in more elaborate DSP algorithms we could expect the object to have a number of instance variables
to hold things such as previous samples, waveform tables, and other parameters.

v 3.24 50

6 SAL

Nyquist supports two languages: XLISP and SAL. In some sense, XLISP and SAL are the same language,
but with differing syntax. This chapter describes SAL: how it works, SAL syntax and semantics, and the
relationship between SAL and XLISP, and differences between Nyquist SAL and Common Music SAL.

Nyquist SAL is based on Rick Taube’s SAL language, which is part of Common Music. SAL offers the power
of Lisp but features a simple, Algol-like syntax. SAL is implemented in Lisp: Lisp code translates SAL into
a Lisp program and uses the underlying Lisp engine to evaluate the program. Aside from the translation
time, which is quite fast, SAL programs execute at about the same speed as the corresponding Lisp program.
(Nyquist SAL programs run just slightly slower than XLISP because of some runtime debugging support
automatically added to user programs by the SAL compiler.)

From the user’s perspective, these implementation details are hidden. You can enter SAL mode from XLISP
by typing (SAL) to the XLISP prompt. The SAL input prompt (SAL>) will be displayed. From that point
on, you simply type SAL commands, and they will be executed. By setting a preference in the NyquistIDE
program, SAL mode will be entered automatically.

It is possible to encounter errors that will take you from the SAL interpreter to an XLISP prompt. In general,
the way to get back to SAL is by typing (top) to get back to the top level XLISP interpreter and reset the
Nyquist environment. Then type (sal) to restart the SAL interpreter.

6.1 SAL Syntax and Semantics

The most unusual feature of SAL syntax is that identifiers are Lisp-like, including names such as “play-file”
and even “*warp*.” In SAL, most operators must be separated from identifiers by white space. For example,
play-file is one identifier, but play - file is an expression for “play minus file,” where play and file
are two separate identifiers. Fortunately, no spaces are needed around commas and parentheses.

The set SAL identifiers is difficult to describe due to a number of interacting rules designed to prevent surpris-
ing or confusing code. The exact details can be found in the symbol-token? function in sal-parse.lsp.
To determine if an identifier is allowed, you can also follow the following example, which tests whether $a@
is a valid identifier:

SAL> print type-of(quote($a@))

51

Nyquist Reference Manual Chapter 6. SAL

If this statement prints SYMBOL, then the quoted expression is a valid identifier. If SAL reports a "parse error"
or some other type, then the quoted expression is not a valid identifier.

In SAL, whitespace (any sequence of space, newline, or tab characters) is sometimes necessary to separate
lexical tokens, but otherwise, spaces and indentation are ignored. To make SAL readable, it is strongly
advised that you indent SAL programs as in the examples here. The NyquistIDE program is purposely
insistent about SAL indentation, so if you use it to edit SAL programs, your indentation should be both
beautiful and consistent.

As in Lisp (but very unlike C or Java), comments are indicated by semicolons. Any text from an unquoted
semicolon to the end of the line is ignored.

; this is a comment
; comments are ignored by the compiler
print "Hello World" ; this is a SAL statement

As in Lisp, identifiers are translated to upper-case, making SAL case-insensitive. For example, the function
name autonorm can be typed in lower case or as AUTONORM, AutoNorm, or even AuToNoRm. All forms denote
the same function. The recommended approach is to write programs in all lower case.

SAL is organized around statements, most of which contain expressions. We will begin with expressions and
then look at statements.

6.1.1 Expressions

6.1.1.1 Simple Expressions

As in XLISP, simple expressions include:

• integers (FIXNUM’s), such as 1215,

• floats (FLONUM’s) such as 12.15,

• strings (STRING’s) such as "Magna Carta", and

• symbols (SYMBOL’s) such as magna-carta. A symbol with a leading colon (:) evaluates to itself as
in Lisp. Otherwise, a symbol denotes either a local variable, a formal parameter, or a global variable.
As in Lisp, variables do not have data types or type declarations. The type of a variable is determined
at runtime by its value.

Additional simple expressions in SAL are:

• lists such as {c 60 e 64}. Note that there are no commas to separate list elements, and symbols in
lists are not evaluated as variables but stand for themselves. Lists may contain numbers, booleans
(which represent XLISP’s T or NIL, SAL identifiers (representing XLISP symbols), strings, SAL
operators (representing XLISP symbols), and nested lists.

v 3.24 52

Nyquist Reference Manual Chapter 6. SAL

• Booleans: SAL interprets #t as true and #f as false. (As far as the SAL compiler is concerned, t and
nil are just variables. Since these are the Lisp versions of true and false, they are interchangeable with
#t and #f, respectively.)

A curious property of Lisp and Sal is that false and the empty list (nil) are the same value. Since SAL is
based on Lisp, #f and {} (the empty list) and nil are all equal.

6.1.1.2 Operators

Expressions can be formed with unary and binary operators using infix notation. The operators are:

+
addition, including sounds

-
subtraction, including sounds

*
multiplication, including sounds

/
division (due to divide-by-zero problems, does not operate on sounds)

%
modulus (remainder after division)

ˆ
exponentiation

=
equal (using Lisp equal for non-lists, and comparing lists element-by-element recursively)1

!=
not equal

>
greater than

<
less than

>=
greater than or equal

1In the Common Music implementation of SAL, = compiles to the Lisp = function, so this is an incompatible difference.

v 3.24 53

Nyquist Reference Manual Chapter 6. SAL

<=
less than or equal

~=
approximately equal. Numbers are approximately equal if they are within *~=tolerance* of each
other. *~=tolerance* is initially 0.000001. Non-numbers are compared with the XLISP equal
function, and lists are compared element-by-element (recursively) using ~=.2

&
logical and

|
logical or

!
logical not (unary)

@
time shift

@@
time shift to absolute time

~
time stretch

~~
time stretch to absolute stretch factor

Again, remember that operators must be delimited from their operands using spaces or parentheses. Operator
precedence is based on the following levels of precedence:

@ @@ ~ ~~
ˆ
/ *
% - +
~= <= >= > ~= =
!
&
|
2In the Common Music implementation of SAL, ~= compiles to the Lisp equal function, so this is an incompatible difference.

v 3.24 54

Nyquist Reference Manual Chapter 6. SAL

6.1.1.3 Function Calls

A function call is a function name followed by zero or more comma-delimited argument expressions enclosed
within parentheses:

list()
piano-note(2.0, c4 + interval, 100)

Some functions use named parameters, in which case the name of the argument with a colon precedes the
argument expression.

s-save(my-snd(), ny:all, "tmp.wav", play: #t, bits: 16)

6.1.1.4 Array Notation

An array reference is a variable identifier followed by an index expression in square brackets, e.g.:

x[23] + y[i]

6.1.1.5 Conditional Values

The special operator #? evaluates the first argument expression. If the result is true, the second expression is
evaluated and its value is returned. If false, the third expression is evaluated and returned (or false is returned
if there is no third expression):

#?(random(2) = 0, unison, major-third)
#?(pitch >= c4, pitch - c4) ; returns false if pitch < c4

6.1.2 SAL Statements

SAL compiles and evaluates statements one at a time. You can type statements at the SAL prompt or load
a file containing SAL statements. SAL statements are described below. The syntax is indicated at the
beginning of each statement type description: this font indicates literal terms such as keywords, the italic
font indicates a place-holder for some other statement or expression. Bracket [like this] indicate optional
(zero or one) syntax elements, while braces with a plus {like this}+ indicate one or more occurrences of a
syntax element. Braces with a star {like this}* indicate zero or more occurrences of a syntax element: {
non-terminal }* is equivalent to [{non-terminal}+].

6.1.2.1 begin and end

begin [with-stmt] {statement}+ end

A begin-end statement consists of a sequence of statements surrounded by the begin and end keywords.
This form is often used for function definitions and after then or else where the syntax demands a single

v 3.24 55

Nyquist Reference Manual Chapter 6. SAL

statement but you want to perform more than one action. Variables may be declared using an optional with
statement immediately after begin. For example:

begin
with db = 12.0,

linear = db-to-linear(db)
print db, "dB represents a factor of", linear
set scale-factor = linear

end

6.1.2.2 chdir

chdir expression

The chdir statement changes the working directory. This statement is provided for compatibility with
Common Music SAL, but it really should be avoided if you use NyquistIDE. The expression following the
chdir keyword should evaluate to a string that is a directory path name. Note that literal strings themselves
are valid expressions.

chdir "/Users/rbd/tmp"

6.1.2.3 define variable

[define] variable name [= expression] {, name [= expression]}*

Global variables can be declared and initialized. A list of variable names, each with an optional initialization
follows the define variable keywords. (Since variable is a keyword, define is redundant and optional
in Nyquist SAL, but required in Common Music SAL.) If the initialization part is omitted, the variable is
initialized to false. Global variables do not really need to be declared: just using the name implicitly creates
the corresponding variable. However, it is an error to use a global variable that has not been initialized;
define variable is a good way to introduce a variable (or constant) with an initial value into your program.

define variable transposition = 2,
print-debugging-info, ; initially false
output-file-name = "salmon.wav"

6.1.2.4 define function

[define] function name ([parameter] {, parameter}*) statement

Before a function be called from an expression (as described above), it must be defined. A function definition
gives the function name, a list of parameters, and a statement. When a function is called, the actual parameter
expressions are evaluated from left to right and the formal parameters of the function definition are set to
these values. Then, statement is evaluated.

v 3.24 56

Nyquist Reference Manual Chapter 6. SAL

The formal parameters may be positional parameters that are matched with actual parameters by position
from left to right. Syntactically, these are symbols and these symbols are essentially local variables that exist
only until statement completes or a return statement causes the function evaluation to end. As in Lisp,
parameters are passed by value, so assigning a new value to a formal parameter has no effect on the actual
value. However, lists and arrays are not copied, so internal changes to a list or array produce observable side
effects.

Alternatively, formal parameters may be keyword parameters. Here the parameter is actually a pair: a
keyword parameter, which is a symbol followed by a colon, and a default value, given by any expression.
Within the body of the function, the keyword parameter is named by a symbol whose name matches the
keyword parameter except there is no final colon.

define function foo(x: 1, y: bar(2, 3))
display "foo", x, y

exec foo(x: 6, y: 7)

In this example, x is bound to the value 6 and y is bound to the value 7, so the example prints “foo : X =
6, Y = 7”. Note that while the keyword parameters are x: and y:, the corresponding variable names in the
function body are x and y, respectively.

The parameters are meaningful only within the lexical (static) scope of statement. They are not accessible
from within other functions even if they are called by this function.

Use a begin-end statement if the body of the function should contain more than one statement or you need
to define local variables. Use a return statement to return a value from the function. If statement completes
without a return, the value false is returned.

6.1.2.5 exec

exec expression

Unlike most other programming languages, you cannot simply type an expression as a statement. If you
want to evaluate an expression, e.g. call a function, you must use an exec statement. The statement simply
evaluates the expression. For example,

exec set-sound-srate(22050.0) ; change default sample rate

6.1.2.6 if

if test-expr then true-stmt [else false-stmt]

An if statement evaluates the expression test-expr. If it is true, it evaluates the statement true-stmt. If false,
the statement false-stmt is evaluated. Use a begin-end statement to evaluate more than one statement in then
then or else parts.

v 3.24 57

Nyquist Reference Manual Chapter 6. SAL

if x < 0 then x = -x ; x gets its absoute value

if x > upper-bound then
begin

print "x too big, setting to", upper-bound
x = upper-bound

end
else

if x < lower-bound then
begin

print "x too small, setting to", lower-bound
x = lower-bound

end

Notice in this example that the else part is another if statement. An if may also be the then part of another
if, so there could be two possible if’s with which to associate an else. An else clause always associates
with the closest previous if that does not already have an else clause.

6.1.2.7 when

when test statement

The when statement is similar to if, but there is no else clause.

when *debug-flag* print "you are here"

6.1.2.8 unless

unless test statement

The unless statement is similar to when (and if) but the statement is executed when the test expression is
false.

unless count = 0 set average = sum / count

6.1.2.9 load

load path-expression

The load command loads a file named by path-expression, which must be either a literal string or a variable
name. When evauated, path-expression must result in a string path name for the file. The extension .sal is
appended to the path if needed. To load a file, SAL interprets each statement in the file, stopping when the
end of the file or an error is encountered. If the file name ends in the extension .lsp, the file is assumed to
contain Lisp expressions, which are evaluated by the XLISP interpreter. In general, SAL files should end
with the extension .sal.

v 3.24 58

Nyquist Reference Manual Chapter 6. SAL

6.1.2.10 loop

loop [with-stmt] {stepping}* {stopping}* {action}+ [finally] end

The loop statement is by far the most complex statement in SAL, but it offers great flexibility for just about
any kind of iteration. The basic function of a loop is to repeatedly evaluate a sequence of action’s which are
statements. Before the loop begins, local variables may be declared in with-stmt, a with statement.

The stepping clauses do several things. They introduce and initialize additional local variables similar to the
with-stmt. However, these local variables are updated to new values after the action’s. In addition, some
stepping clauses have associated stopping conditions, which are tested on each iteration before evaluating the
action’s.

There are also stopping clauses that provide additional tests to stop the iteration. These are also evaluated and
tested on each iteration before evaluating the action’s.

When some stepping or stopping condition causes the iteration to stop, the finally clause is evaluated (if
present). Local variables and their values can still be accessed in the finally clause. After the finally clause,
the loop statement completes.

The stepping clauses are the following:

repeat expression
Sets the number of iterations to the value of expression, which should be an integer (FIXNUM).

for var = expression [then expr2]
Introduces a new local variable named var and initializes it to expression. Before each subsequent
iteration, var is set to the value of expr2. If the then part is omitted, expression is re-evaluated and
assigned to var on each subsequent iteration. Note that this differs from a with-stmt where expressions
are evaluated and variables are only assigned their values once. Warning: All for clauses evaluate
before stopping conditions are evaluated, which means if the loop iterates N times, the for clauses run
N+1 times. To avoid evaluation after the last iteration, you can often use set var = expr2.

for var in expression
Evaluates expression to obtain a list and creates a new local variable initialized to the first element of
the list. After each iteration, var is assigned the next element of the list. Iteration stops when var has
assumed all values from the list. If the list is initially empty, the loop action’s are not evaluated (there
are zero iterations).

for var [from from-expr] [[to | below | downto | above] to-expr] [by step-expr]
Introduces a new local variable named var and intialized to the value of the expression from-expr (with
a default value of 0). After each iteration of the loop, var is incremented by the value of step-expr
(with a default value of 1). The iteration ends when var is greater than the value of to-expr if there is a
to clause, greater than or equal to the value of to-expr if there is a below clause, less than the value
of to-expr if there is a downto clause, or less than or equal to the value of to-expr if there is a above
clause. (In the cases of downto and above, the default increment value is -1. If there is no to, below,
downto, or above clause, no iteration stop test is created for this stepping clause.

v 3.24 59

Nyquist Reference Manual Chapter 6. SAL

The stopping clauses are the following:

while expression
The iterations are stopped when expression evaluates to false. Anything not false is considered to mean
true.

until expression
The iterations are stopped when expression evaluates to true.

The finally clause is defined as follows:

finally statement
The statement is evaluated when one of the stepping or stopping clauses ends the loop. As always,
statement may be a begin-end statement. If an action evaluates a return statement, the finally
statement is not executed.

Loops often fall into common patterns, such as iterating a fixed number of times, performing an operation
on some range of integers, collecting results in a list, and linearly searching for a solution. These forms are
illustrated in the examples below.

; iterate 10 times
loop

repeat 10
print random(100)

end

; print even numbers from 10 to 20
; note that 20 is printed. On the next iteration,
; i = 22, so i >= 22, so the loop exits.
loop

for i from 10 below 22 by 2
print i

end

; collect even numbers in a list
loop

with lis
for i from 0 to 10 by 2
set lis @= i ; push integers on front of list,

; which is much faster than append,
; but list is built in reverse

finally set result = reverse(lis)
end
; since "to" is used, the loop stops when i > 10
; now, the variable result has a list of evens: {0 2 4 6 8 10}

v 3.24 60

Nyquist Reference Manual Chapter 6. SAL

; find the first even number in a list
result = #f ; #f means "false"
loop

for elem in lis
until evenp(elem)
finally result = elem

end
; result has first even value in lis (or it is #f)

6.1.2.11 play

play expr

The play statement plays the sound denoted by expr, an expression.

6.1.2.12 plot

plot expr {, dur, n}

The plot statement plots the sound denoted by expr, an expression. If you plot a long sound, the plot
statement will by default truncate the sound to 2.0 seconds and resample the signal to 1000 points. The
optional dur is an expression that specifies the (maximum) duration to be plotted, and the optional n specifies
the number of points to be plotted. Executing a plot statement is equivalent to calling the s-plot function
(see Section 7.5).

6.1.2.13 print

print expr {, expr}*

The print statement prints the values separated by spaces and followed by a newline. [Note that in the
original SAL, the newline is printed before the values, not after.]

6.1.2.14 display

display string {, expression}*

The display statement is handy for debugging. At present, it is only implemented in Nyquist SAL. When
executed, display prints the string followed by a colon and then, for each expression, the expression and its
value are printed; after the last expression, a newline is printed. For example,

display "In function foo", bar, baz

prints

In function foo : bar = 23, baz = 5.3

v 3.24 61

Nyquist Reference Manual Chapter 6. SAL

SAL may print the expressions using Lisp syntax, e.g. if the expression is “bar + baz,” do not be surprised if
the output is “(sum bar baz) = 28.3.”

print "The value of x is", x

6.1.2.15 return

return expression

The return statement can only be used inside a function. It evaluates expression and then the function
returns the value of the expression to its caller.

6.1.2.16 set

set var op expression {, var op expression}*

The set statement changes the value of a variable var according to the operator op and the value of the
expression. The operators are:

=
The value of expression is assigned to var.

+=
The value of expression is added to var.

*=
The value of var is multiplied by the value of the expression.

&=
The value of expression is inserted as the last element of the list referenced by var. If var is the
empty list (denoted by #f), then var is assigned a newly constructed list of one element, the value of
expression.

ˆ=
The value of expression, a list, is appended to the list referenced by var. If var is the empty list (denoted
by #f), then var is assigned the (list) value of expression.

@=
Pushes the value of expression onto the front of the list referenced by var. If var is empty (denoted by
#f), then var is assigned a newly constructed list of one element, the value of expression.

v 3.24 62

Nyquist Reference Manual Chapter 6. SAL

<=
Sets the new value of var to the minimum of the old value of var and the value of expression.

>=
Sets the new value of var to the maximum of the old value of var and the value of expression.

; example from Rick Taube's SAL description
loop

with a, b = 0, c = 1, d = {}, e = {}, f = -1, g = 0
for i below 5
set a = i, b += 1, c *= 2, d &= i, e @= i, f <= i, g >= i
finally display "results", a, b, c, d, e, f, g

end

6.1.2.17 with

with var [= expression] {, var [= expression]}*

The with statement declares and initializes local variables. It can appear only after begin or loop. If the
expression is omitted, the initial value is false. The variables are visible only inside the begin-end or loop
statement where the with statement appears. Even in loop’s the variables are intialized only when the loop
is entered, not on each iteration.

6.1.2.18 exit

exit [nyquist]

The exit statement is unique to Nyquist SAL. It returns from SAL mode to the XLISP interpreter. (Return
to SAL mode by typing “(sal)”). If nyquist is included in the statement, then the entire Nyquist process
will exit.

6.2 Interoperability of SAL and XLISP

When SAL evaluatas command or loads files, it translates SAL into XLISP. You can think of SAL as a
program that translates everything you write into XLISP and entering it for you. Thus, when you define a
SAL function, the function actually exists as an XLISP function (created using Lisp’s defun special form).
When you set or evaluate global variables in SAL, these are exactly the same Lisp global variables. Thus,
XLISP functions can call SAL functions and vice-versa. At run time, everything is Lisp.

v 3.24 63

Nyquist Reference Manual Chapter 6. SAL

6.2.1 Function Calls

In general, there is a very simple translation from SAL to Lisp syntax and back. A function call is SAL, for
example,

osc(g4, 2.0)

is translated to Lisp by moving the open parenthesis in front of the function name and removing the commas:

(osc g4 2.0)

Similarly, if you want to translate a Lisp function call to SAL, just reverse the translation.

6.2.2 Symbols and Functions

SAL translates keywords with trailing colons (such as foo:) into Lisp keywords with leading colons
(such as :foo), but SAL keywords are not treated as expressions as they are in Lisp. You cannot write
open("myfile.txt", direction: output:) because SAL expects an expression after direction. A
special form keyword is defined to generate a Lisp keyword as an expression. The argument is the keyword
without a colon, e.g. open("myfile.txt", direction: keyword(output)). Alternatively, you can
write the Lisp-style keyword with the leading colon, e.g. open("myfile.txt", direction: :output).

In Nyquist SAL, the hash character (#), can be used as a prefix to a Lisp function name. For example, the
following command is not legal because print is a SAL command name, not a legal function name:

set v = append(print(a), print(b))

(Here the intent is to print arguments to append). However, you can use the hash character to access the Lisp
print function:

set v = append(#print(a), #print(b))

6.2.3 Playing Tricks On the SAL Compiler

In many cases, the close coupling between SAL and XLISP gives SAL unexpected expressive power. A good
example is seqrep. This is a special looping construct in Nyquist, implemented as a macro in XLISP. In
Lisp, you would write something like:

(seqrep (i 10) (pluck c4))

One might expect SAL would have to define a special seqrep statement to express this, but since statements
do not return values, this approach would be problematic. The solution (which is already fully implemented
in Nyquist) is to define a new macro sal-seqrep that is equivalent to seqrep except that it is called as
follows:

(sal-seqrep i 10 (pluck c4))

v 3.24 64

Nyquist Reference Manual Chapter 6. SAL

The SAL compiler automatically translates the identifier seqrep to sal-seqrep. Now, in SAL, you can just
write

seqrep(i, 10, pluck(c4))

which is translated in a pretty much semantics-unaware fashion to

(sal-seqrep i 10 (pluck c4))

and viola!, we have Nyquist control constructs in SAL even though SAL is completely unaware that seqrep
is actually a special form.

v 3.24 65

7 Nyquist Functions

This chapter provides a language reference for Nyquist. Operations are categorized by functionality and
abstraction level. Nyquist is implemented in two important levels: the “high level” supports behavioral
abstraction, which means that operations like stretch and at can be applied. These functions are the ones
that typical users are expected to use, and most of these functions are written in XLISP.

The “low-level” primitives directly operate on sounds, but know nothing of environmental variables (such as
warp, etc.). The names of most of these low-level functions start with “snd-”. In general, programmers
should avoid any function with the “snd-” prefix. Instead, use the “high-level” functions, which know about
the environment and react appropriately. The names of high-level functions do not have prefixes like the
low-level functions.

There are certain low-level operations that apply directly to sounds (as opposed to behaviors) and are relatively
“safe” for ordinary use. These are marked as such.

Nyquist uses both linear frequency and equal-temperament pitch numbers to specify repetition rates. Fre-
quency is always specified in either cycles per second (hz), or pitch numbers, also referred to as “steps,” as in
steps of the chromatic scale. Steps are floating point numbers such that 60 = Middle C, 61 = C#, 61.23 is C#
plus 23 cents, etc. The mapping from pitch number to frequency is the standard exponential conversion, and
fractional pitch numbers are allowed:

f requency = 440×2(pitch−69)/12

There are many predefined pitch names. By default these are tuned in equal temperament, with A4 = 440Hz,
but these may be changed. (See Section 1.8).

7.1 Sounds

A sound is a primitive data type in Nyquist. Sounds can be created, passed as parameters, garbage collected,
printed, and set to variables just like strings, atoms, numbers, and other data types.

7.1.1 What is a Sound?

Sounds have 5 components:

66

Nyquist Reference Manual Chapter 7. Nyquist Functions

• srate – the sample rate of the sound.

• samples – the samples.

• signal-start – the time of the first sample.

• signal-stop – the time of one past the last sample.

• logical-stop – the time at which the sound logically ends, e.g. a sound may end at the beginning of
a decay. This value defaults to signal-stop, but may be set to any value.

It may seem that there should be logical-start to indicate the logical or perceptual beginning of a sound
as well as a logical-stop to indicate the logical ending of a sound. In practice, only logical-stop is
needed; this attribute tells when the next sound should begin to form a sequence of sounds. In this respect,
Nyquist sounds are asymmetric: it is possible to compute sequences forward in time by aligning the logical
start of each sound with the logical-stop of the previous one, but one cannot compute “backwards”,
aligning the logical end of each sound with the logical start of its successor. The root of this asymmetry is the
fact that when we invoke a behavior, we say when to start, and the result of the behavior tells us its logical
duration. There is no way to invoke a behavior with a direct specification of when to stop1.

Note: there is no way to enforce the intended “perceptual” interpretation of logical-stop. As far as Nyquist
is concerned, these are just numbers to guide the alignment of sounds within various control constructs.

7.1.2 Multichannel Sounds

Multichannel sounds are represented by Lisp arrays of sounds. To create an array of sounds the XLISP
vector function is useful. Most low-level Nyquist functions (the ones starting with snd-) do not operate on
multichannel sounds. Most high-level functions do operate on multichannel sounds.

7.1.3 Accessing and Creating Sound

Several functions display information concerning a sound and can be used to query the components of a
sound. There are functions that access samples in a sound and functions that construct sounds from samples.

sref(sound, time) [SAL]
(sref sound time) [LISP]

Accesses sound at the point time, which is a local time. If time does not correspond to a sample time,
then the nearest samples are linearly interpolated to form the result. To access a particular sample,
either convert the sound to an array (see snd-samples below), or use snd-srate and snd-t0 (see
below) to find the sample rate and starting time, and compute a time (t) from the sample number (n):

1Most behaviors will stop at time 1, warped according to *warp* to some real time, but this is by convention and is not a direct
specification.

v 3.24 67

Nyquist Reference Manual Chapter 7. Nyquist Functions

t = (n/srate)+ t0

Thus, the Lisp code to access the nth sample of a sound would look like:

(sref sound (global-to-local (+ (/ n (snd-srate sound)) (snd-t0 sound))))

Or in SAL, it would look like:

sref(sound, global-to-local(n / snd-srate(sound) + snd-t0(sound)))

Here is why sref interprets its time argument as a local time (shown first in LISP and then in SAL
syntax):

> (sref (ramp 1) 0.5) ; evaluate a ramp at time 0.5
0.5
SAL> print sref(ramp(1), 0.5) ; evaluate a ramp at time 0.5
0.5
> (at 2.0 (sref (ramp 1) 0.5)) ; ramp is shifted to start at 2.0

; the time, 0.5, is shifted to 2.5
0.5
SAL> sref(ramp(1), 0.5) @ 2.0 ; ramp is shifted to start at 2.0

; the time, 0.5, is shifted to 2.5
0.5

If you were to use snd-sref, which treats time as global, instead of sref, which treats time as local,
then the first example above would return the same answer (0.5), but the second example would return
0. Why? Because the ramp behavior would be shifted to start at time 2.0, but the resulting sound would
be evaluated at global time 0.5. By definition, sounds have a value of zero before their start time.

sref-inverse(sound, value) [SAL]
(sref-inverse sound value) [LISP]

Search sound for the first point at which it achieves value and return the corresponding (linearly
interpolated) time. If no inverse exists, an error is raised. This function is used by Nyquist in the
implementation of time warping.

snd-from-array(t0, sr, array) [SAL]
(snd-from-array t0 sr array) [LISP]

Converts a lisp array of FLONUMs into a sound with starting time t0 and sample rate sr. Safe for ordinary
use. Be aware that arrays of floating-point samples use 14 bytes per sample, and an additional 4 bytes
per sample are allocated by this function to create a sound type.

snd-fromarraystream(t0, sr, object) [SAL]
(snd-fromarraystream t0 sr object) [LISP]

Creates a sound for which samples come from object. The starting time is t0 (a FLONUM), and the
sample rate is sr. The object is an XLISP object (see Section C.11 for information on objects.) A
sound is returned. When the sound needs samples, they are generated by sending the message :next to
object. If object returns NIL, the sound terminates. Otherwise, object must return an array of FLONUMs.
The values in these arrays are concatenated to form the samples of the resulting sound. In the current
implementation, all arrays must have the same length. There is no provision for object to specify the
logical stop time of the sound, so the logical stop time is the termination time.

v 3.24 68

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-fromobject(t0, sr, object) [SAL]
(snd-fromobject t0 sr object) [LISP]

Creates a sound for which samples come from object. The starting time is t0 (a FLONUM), and the
sample rate is sr. The object is an XLISP object (see Section C.11 for information on objects. A sound
is returned. When the sound needs samples, they are generated by sending the message :next to
object. If object returns NIL, the sound terminates. Otherwise, object must return a FLONUM. There
is no provision for object to specify the logical stop time of the sound, so the logical stop time is the
termination time.

snd-extent(sound, maxsamples) [SAL]
(snd-extent sound maxsamples) [LISP]

Returns a list of two numbers: the starting time of sound and the terminate time of sound. Finding the
terminate time requires that samples be computed. Like most Nyquist functions, this is non-destructive,
so memory will be allocated to preserve the sound samples. If the sound is very long or infinite, this
may exhaust all memory, so the maxsamples parameter specifies a limit on how many samples to
compute. If this limit is reached, the terminate time will be (incorrectly) based on the sound having
maxsamples samples. This function is safe for ordinary use.

snd-fetch(sound) [SAL]
(snd-fetch sound) [LISP]

Reads samples sequentially from sound. This returns a FLONUM after each call, or NIL when sound
terminates. Note: snd-fetch modifies sound; it is strongly recommended to copy sound using
snd-copy and access only the copy with snd-fetch.

snd-fetch-array(sound, len, step) [SAL]
(snd-fetch-array sound len step) [LISP]

Reads sequential arrays of samples from sound, returning either an array of FLONUMs or NIL when the
sound terminates. The len parameter, a FIXNUM, indicates how many samples should be returned in the
result array. After the array is returned, sound is modified by skipping over step (a FIXNUM) samples.
If step equals len, then every sample is returned once. If step is less than len, each returned array will
overlap the previous one, so some samples will be returned more than once. If step is greater than
len, then some samples will be skipped and not returned in any array. The step and len may change
at each call, but in the current implementation, an internal buffer is allocated for sound on the first
call, so subsequent calls may not specify a greater len than the first. When an array is returned, it will
have len samples. If necessary, snd-fetch-array will read zeros beyond the end of the sound to
fill the array. When this happens, *rslt* is set to a FIXNUM number of samples in the array that
were read from the sound before the physical stop time of the sound. If all samples in the array are
“valid” samples from the sound (coming from the sound before the sound terminates), *rslt* is set to
NIL. The *rslt* variable is global and used to return extra results from other functions, so programs
should not assume *rslt* is valid after subsequent function calls. Note: snd-fetch-array modifies
sound; it is strongly recommended to copy sound using snd-copy and access only the copy with
snd-fetch-array.

v 3.24 69

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-flatten(sound, maxlen) [SAL]
(snd-flatten sound maxlen) [LISP]

This function is identical to snd-length. You would use this function to force samples to be computed
in memory. Normally, this is not a good thing to do, but here is one appropriate use: In the case of
sounds intended for wavetables, the unevaluated sound may be larger than the evaluated (and typically
short) one. Calling snd-flatten will compute the samples and allow the unit generators to be freed
in the next garbage collection. Note: If a sound is computed from many instances of table-lookup
oscillators, calling snd-flatten will free the oscillators and their tables. Calling (stats) will print
how many total bytes have been allocated to tables.

snd-length(sound, maxlen) [SAL]
(snd-length sound maxlen) [LISP]

Counts the number of samples in sound up to the physical stop time. If the sound has more than maxlen
samples, maxlen is returned. Calling this function will cause all samples of the sound to be computed
and saved in memory (about 4 bytes per sample). Otherwise, this function is safe for ordinary use.

snd-maxsamp(sound) [SAL]
(snd-maxsamp sound) [LISP]

Computes the maximum of the absolute value of the samples in sound. Calling this function will cause
samples to be computed and saved in memory. (This function should have a maxlen parameter to allow
self-defense against sounds that would exhaust available memory.) Otherwise, this function is safe for
ordinary use. This function will probably be removed in a future version. See peak, a replacement
(page 122).

snd-play(expression) [SAL]
(snd-play expression) [LISP]

Evaluates expression to obtain a sound, computes all of the samples (without retaining them in memory),
and returns the number of samples computed. Originally, this was a placeholder for a facility to play
samples directly to an audio output device, but playback is now accomplished by s-save. Meanwhile,
since this function does not write samples to a file, it is useful in determining how much time is spent
calculating samples. See s-save (Section 7.5) for saving samples to a file, and play (Section 7.5) to
play a sound. This function is safe for ordinary use. Note that it does not accept multichannel sounds.
To time mult-channel sound computation, you might try applying to-mono (see Section 7.1.4) to get a
SOUND.

snd-print-tree(sound) [SAL]
(snd-print-tree sound) [LISP]

Prints an ascii representation of the internal data structures representing a sound. This is useful for
debugging Nyquist. This function is safe for ordinary use.

snd-samples(sound, limit) [SAL]
(snd-samples sound limit) [LISP]

Converts the samples into a lisp array. The data is taken directly from the samples, ignoring shifts.
For example, if the sound starts at 3.0 seconds, the first sample will refer to time 3.0, not time 0.0. A
maximum of limit samples is returned. This function is safe for ordinary use, but like snd-from-array,
it requires a total of slightly over 18 bytes per sample.

v 3.24 70

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-srate(sound) [SAL]
(snd-srate sound) [LISP]

Returns the sample rate of the sound. Safe for ordinary use.

snd-time(sound) [SAL]
(snd-time sound) [LISP]

Returns the start time of the sound. This will probably go away in a future version, so use snd-t0
instead.

snd-t0(sound) [SAL]
(snd-t0 sound) [LISP]

Returns the time of the first sample of the sound. Note that Nyquist operators such as add always copy
the sound and are allowed to shift the copy up to one half sample period in either direction to align the
samples of two operands. Safe for ordinary use.

snd-print(expression, maxlen) [SAL]
(snd-print expression maxlen) [LISP]

Evaluates expression to yield a sound or an array of sounds, then prints up to maxlen samples to the
screen (stdout). This is similar to snd-save, but samples appear in text on the screen instead of in
binary in a file. This function is intended for debugging. Safe for ordinary use.

snd-set-logical-stop(sound, time) [SAL]
(snd-set-logical-stop sound time) [LISP]

Returns a sound which is sound, except that the logical stop of the sound occurs at time. Note: do not
call this function. When defining a behavior, use set-logical-stop or set-logical-stop-abs
instead.

snd-sref(sound, time) [SAL]
(snd-sref sound time) [LISP]

Evaluates sound at the global time given by time. Safe for ordinary use, but normally, you should call
sref instead.

snd-stop-time(sound) [SAL]
(snd-stop-time sound) [LISP]

Returns the stop time of sound. Sounds can be “clipped” or truncated at a particular time. This function
returns that time or MAX-STOP-TIME if he programmer has not specified a stop time for the sound.
Safe for ordinary use.

soundp(sound) [SAL]
(soundp sound) [LISP]

Returns true iff sound is a SOUND. Safe for ordinary use.

stats() [SAL]
(stats) [LISP]

Prints the memory usage status. See also the XLISP mem function. Safe for ordinary use. This is the
only way to find out how much memory is being used by table-lookup oscillator instances.

v 3.24 71

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-set-max-audio-mem(bytes) [SAL]
(snd-set-max-audio-mem bytes) [LISP]

Sets a limit (a FIXNUM in bytes) on the amount of main memory that Nyquist will allocate for
SOUNDs (this does not count table memory). The default is about 1GB. The return value is the
previous limit, in bytes. This is not a limit on how big sounds can be. Since Nyquist computes sound
incrementally, it can generally play sounds or write sounds to files without storing them in memory.
However, if you store large sounds in variables, memory usage can exceed your available RAM, causing
extremely slow computation as main memory is swapped to and from disk or Nyquist might run out of
memory and crash. The goal of placing a limit on audio memory is to terminate computations before
memory is totally exhausted, allowing Nyquist to print an error message and allowing the user to view
or save work. Generally, if you see the message “The maximum number of sample blocks has been
reached, ...,” you should fix your code to avoid accumulating samples in memory, e.g. do not assign
sounds to global variables. Alternatively, you can use this function to increase the limit, but of course
you are still limited by the actual size of memory on your computer, and exceeding that could cause
severe performance problems in Nyquist and and any other applications that are running. See also
Section 1.4 for command line options to limit yquist memory, run time, and file access (these options
are not available through the NyquistIDE.)

7.1.4 Miscellaneous Functions

These are all safe and recommended for ordinary use.

to-mono(sound) [SAL]
(to-mono sound) [LISP]

Returns the sum of all channels of sound if it is a multichannel sound. If sound is a SOUND, it is
simply returned unchanged. See sim (Section 7.4) for more details on how channels are summed.

db-to-linear(x) [SAL]
(db-to-linear x) [LISP]

Returns the conversion of x from decibels to linear. 0dB is converted to 1. 20dB represents a linear
factor of 10. If x is a sound, each sample is converted and a sound is returned. If x is a multichannel
sound, each channel is converted and a multichannel sound (array) is returned. Note: With sounds,
conversion is only performed on actual samples, not on the implicit zeros before the beginning and
after the termination of the sound. Sample rates, start times, etc. are taken from x.

db-to-vel(x [, float]) [SAL]
(db-to-vel x [float]) [LISP]

Returns the conversion of x from decibels to MIDI velocity using a rule that maps -60 dB to 1 and 0 dB
to 127. The MIDI velocity varies linearly with the square root of amplitude. The default value of float
is nil and the result is a FIXNUM clipped to fall in the legal range of 1-127, but if a non-nil value is
provided, the result is a FLONUM that is not rounded or clipped. The input parameter must be a FIXNUM
or FLONUM. Sounds are not allowed.

v 3.24 72

Nyquist Reference Manual Chapter 7. Nyquist Functions

follow(sound, floor, risetime, falltime, lookahead) [SAL]
(follow sound floor risetime falltime lookahead) [LISP]

An envelope follower intended as a commponent for compressor and limiter functions. The basic goal
of this function is to generate a smooth signal that rides on the peaks of the input signal. The usual
objective is to produce an amplitude envelope given a low-sample rate (control rate) signal representing
local RMS measurements. The first argument is the input signal. The floor is the minimum output
value. The risetime is the time (in seconds) it takes for the output to rise (exponentially) from floor
to unity (1.0) and the falltime is the time it takes for the output to fall (exponentially) from unity to
floor. The algorithm looks ahead for peaks and will begin to increase the output signal according to
risetime in anticipation of a peak. The amount of anticipation (in seconds) is given by lookahead.
The algorithm is as follows: the output value is allowed to increase according to risetime or decrease
according to falltime. If the next input sample is in this range, that sample is simply output as the next
output sample. If the next input sample is too large, the algorithm goes back in time as far as necessary
to compute an envelope that rises according to risetime to meet the new value. The algorithm will
only work backward as far as lookahead. If that is not far enough, then there is a final forward pass
computing a rising signal from the earliest output sample. In this case, the output signal will be at least
momentarily less than the input signal and will continue to rise exponentially until it intersects the
input signal. If the input signal falls faster than indicated by falltime, the output fall rate will be limited
by falltime, and the fall in output will stop when the output reaches floor. This algorithm can make
two passes througth the buffer on sharply rising inputs, so it is not particularly fast. With short buffers
and low sample rates this should not matter. See snd-avg for a function that can help to generate a
low-sample-rate input for follow. See snd-chase in Section 7.6.3 for a related filter.

gate(sound, lookahead, risetime, falltime, floor, threshold) [SAL]
(gate sound lookahead risetime falltime floor threshold) [LISP]

Generate an exponential rise and decay intended for noise gate implementation. The decay starts when
the signal drops below threshold and stays there for longer than lookahead (a FLONUM in seconds).
(The signal begins to drop when the signal crosses threshold, not after lookahead.) Decay continues
until the value reaches floor (a FLONUM), at which point the decay stops and the output value is held
constant. Either during the decay or after the floor is reached, if the signal goes above threshold,
then the output value will rise to unity (1.0) at the point the signal crosses the threshold. Because of
internal lookahead, the signal actually begins to rise before the signal crosses threshold. The rise is a
constant-rate exponential and set so that a rise from floor to unity occurs in risetime. Similary, the fall
is a constant-rate exponential such that a fall from unity to floor takes falltime.

noise-gate(sound [, lookahead, risetime, falltime, floor, threshold] [, rms:
use-rms, link: link-option]) [SAL]
(noise-gate sound [lookahead risetime falltime floor threshold] [:rms use-rms
:link link-option]) [LISP]

A simple noise gate implementation based on gate. All parameters except snd are optional and default
values are lookahead: 0.5, risetime: 0.02, falltime: 0.5, floor: 0.01, threshold: 0.01. The keyword
parameters :rms and :link are also optional with default values of use-rms: NIL (false) and link-
option: T (true). The result is the input snd, where below-threshold segments of sound are attenuated
to a maximum of floor (see the gate function above). If use-rms is non-NIL, the threshold applies

v 3.24 73

Nyquist Reference Manual Chapter 7. Nyquist Functions

to the RMS of the sound computed with 10 ms non-overlapping rectangular windows. Otherwise,
threshold applies to the absolute value of each sample in sound. If link-option is non-NIL, and if the
input sound is multichannel, then a single gate is computed and applied to all channels. The gate
threshold is considered to be exceeded when any channel would exceed the threshold and open the
gate. (In other words, whether use-rms or not, a maximum value is computed from all the channels and
used to control the gate.)

hz-to-step(freq) [SAL]
(hz-to-step freq) [LISP]

Returns a step number for freq (in hz), which can be either a number of a SOUND. The result has the
same type as the argument. See also step-to-hz (below).

linear-to-db(x) [SAL]
(linear-to-db x) [LISP]

Returns the conversion of x from linear to decibels. 1 is converted to 0. 0 is converted to -INF (a special
IEEE floating point value.) A factor of 10 represents a 20dB change. If x is a sound, each sample
is converted and a sound is returned. If x is a multichannel sound, each channel is converted and a
multichannel sound (array) is returned. Note: With sounds, conversion is only performed on actual
samples, not on the implicit zeros before the beginning and after the termination of the sound. Start
times, sample rates, etc. are taken from x.

linear-to-vel(x [, float]) [SAL]
(linear-to-vel x [float]) [LISP]

Returns the conversion of x from linear amplitude to MIDI velocity using a rule that maps -60 dB to 1
and 0 dB to 127. The MIDI velocity varies linearly with the square root of amplitude. The default value
of float is nil and the result is a FIXNUM clipped to fall in the legal range of 1-127, but if a non-nil
value is provided, the result is a FLONUM that is not rounded or clipped. The input parameter must be a
FIXNUM or FLONUM. Sounds are not allowed.

log(x) [SAL]
(log x) [LISP]

Calculates the natural log of x (a FLONUM). (See s-log for a version that operates on signals.)

set-control-srate(rate) [SAL]
(set-control-srate rate) [LISP]

Sets the default sampling rate for control signals to rate by setting *default-control-srate*
and reinitializing the environment. Do not call this within any synthesis function (see the
control-srate-abs transformation, Section 7.3).

set-sound-srate(rate) [SAL]
(set-sound-srate rate) [LISP]

Sets the default sampling rate for audio signals to rate by setting *default-sound-srate* and reini-
tializing the environment. Do not call this within any synthesis function (see the sound-srate-abs
transformation, Section 7.3).

set-pitch-names() [SAL]
(set-pitch-names) [LIS]

Initializes pitch variables (c0, cs0, df0, d0, ... b0, c1, ... b7). A440 (the default tuning) is represented

v 3.24 74

Nyquist Reference Manual Chapter 7. Nyquist Functions

by the step 69.0, so the variable a4 (fourth octave A) is set to 69.0. You can change the tuning by setting
A4-Hertz to a value (in Hertz) and calling set-pitch-names to reinitialize the pitch variables.
Note that this will result in non-integer step values. It does not alter the mapping from step values to
frequency. There is no built-in provision for stretched scales or non-equal temperament, although users
can write or compute any desired fractional step values.

step-to-hz(pitch) [SAL]
(step-to-hz pitch) [LISP]

Returns a frequency in hz for pitch, a step number or a SOUND type representing a time-varying step
number. The result is a FLONUM if pitch is a number, and a SOUND if pitch is a SOUND. See also
hz-to-step (above).

get-ioi(dur) [SAL]
(get-ioi dur) [LISP]

Gets the duration of of something starting at a local time of 0 and ending at a local time of dur. For
convenience, *rslt* is set to the global time corresponding to local time zero. Note that sustain is
ignored in this calculation. The intent is to calculate the nominal start time of the next event in a
sequence (or the logical stop time of the current event) rather than the actual sound duration of the
current event.

get-duration(dur) [SAL]
(get-duration dur) [LISP]

Gets the actual duration of of something starting at a local time of 0 and ending at a local time of dur
times the current sustain. For convenience, *rslt* is set to the global time corresponding to local time
zero. See also get-ioi (above).

get-loud() [SAL]
(get-loud) [LISP]

Gets the current value of the *loud* environment variable. If *loud* is a signal, it is evaluated at
local time 0 and a number (FLONUM) is returned.

get-sustain() [SAL]
(get-sustain) [LISP]

Gets the current value of the *sustain* environment variable. If *sustain* is a signal, it is evaluated
at local time 0 and a number (FLONUM) is returned.

get-transpose() [SAL]
(get-transpose) [LISP]

Gets the current value of the *transpose* environment variable. If *transpose* is a signal, it is
evaluated at local time 0 and a number (FLONUM) is returned.

get-warp() [SAL]
(get-warp) [LISP]

Gets a function corresponding to the current value of the *warp* environment variable. For efficiency,
warp is stored in three parts representing a shift, a scale factor, and a continuous warp function.
Get-warp is used to retrieve a signal that maps logical time to real time. This signal combines the
information of all three components of *warp* into a single signal. If the continuous warp function

v 3.24 75

Nyquist Reference Manual Chapter 7. Nyquist Functions

component is not present (indicating that the time warp is a simple combination of at and stretch
transformations), an error is raised. This function is mainly for internal system use. In the future,
get-warp will probably be reimplemented to always return a signal and never raise an error.

local-to-global(local-time) [SAL]
(local-to-global local-time) [LISP]

Converts a score (local) time to a real (global) time according to the current environment.

round(x) [SAL]
(round x) [LISP]

Round x to the nearest integer. If x is n + 0.5, where n is an integer, then return n + 1, even if n is
negative.

snd-set-latency(latency) [SAL]
(snd-set-latency latency) [LISP]

Set the latency requested when Nyquist plays sound to latency, a FLONUM. The previous value is
returned. The default is 0.3 seconds. To avoid glitches, the latency should be greater than the time
required for garbage collection and message printing and any other system activity external to Nyquist.

vel-to-db(x) [SAL]
(vel-to-db x) [LISP]

Returns the conversion of x from MIDI velocity to decibels using a rule that maps MIDI velocity 1 to
-60 dB and 127 to 0 dB. The amplitude is proportional to the square of MIDI velocity. The input x can
be a FIXNUM or FLONUM but not a sound. The result is a FLONUM.

vel-to-linear(x) [SAL]
(vel-to-linear x) [LISP]

Returns the conversion of x from MIDI velocity to linear amplitude ratio using a rule that maps MIDI
velocity 1 to -60 dB (0.001) and 127 to unity gain. The amplitude is proportional to the square of MIDI
velocity. The input x can be a FIXNUM or FLONUM but not a sound. The result is a FLONUM.

7.2 Behaviors

7.2.1 Using Previously Created Sounds

These behaviors take a sound and transform that sound according to the environment. These are useful when
writing code to make a high-level function from a low-level function, or when cuing sounds which were
previously created:

cue(sound) [SAL]
(cue sound) [LISP]

Applies *loud*, the starting time from *warp*, *start*, and *stop* to sound.

v 3.24 76

Nyquist Reference Manual Chapter 7. Nyquist Functions

cue-file(filename) [SAL]
(cue-file filename) [LISP]

Same as cue, except the sound comes from the named file, samples from which are coerced to the
current default *sound-srate* sample rate.

sound(sound) [SAL]
(sound sound) [LISP]

Applies *loud*, the starting time and (possibly continuously varying) stretching from *warp*,
start, and *stop* to sound.

control(sound) [SAL]
(control sound) [LISP]

This function is identical to sound, but by convention is used when sound is a control signal rather
than an audio signal.

7.2.2 Sound Synthesis

These functions provide musically interesting creation behaviors that react to their environment; these are the
“unit generators” of Nyquist:

const(value [, duration]) [SAL]
(const value [duration]) [LISP]

Creates a constant function at the *control-srate*. Every sample has the given value, and the
default duration is 1.0. See also s-rest, which is equivalent to calling const with zero, and note that
you can pass scalar constants (numbers) to sim, sum, and mult where they are handled more efficiently
than constant functions.

env(t1, t2, t4, l1, l2, l3, [dur]) [SAL]
(env t1 t2 t4 l1 l2 l3 dur) [LISP]

Creates a 4-phase envelope. ti is the duration of phase i, and li is the final level of phase i. t3 is implied
by the duration dur, and l4 is 0.0. If dur is not supplied, then 1.0 is assumed. The envelope duration
is the product of dur, *stretch*, and *sustain*. If t1 + t2 + 2ms + t4 is greater than the envelope
duration, then a two-phase envelope is substituted that has an attack/release time ratio of t1/t4. The
sample rate of the returned sound is *control-srate*. (See pwl for a more general piece-wise linear
function generator.) The effect of time warping is to warp the starting time and ending time. The
intermediate breakpoints are then computed as described above.

exp-dec(hold, halfdec, length) [SAL]
(exp-dec hold halfdec length) [LISP]

This convenient envelope shape is a special case of pwev (see Section 7.2.2.2). The envelope starts
at 1 and is constant for hold seconds. It then decays with a half life of halfdec seconds until length.
(The total duration is length.) In other words, the amplitude falls by half each halfdec seconds. When
stretched, this envelope scales linearly, which means the hold time increases and the half decay time
increases.

v 3.24 77

Nyquist Reference Manual Chapter 7. Nyquist Functions

force-srate(srate, sound) [SAL]
(force-srate srate sound) [LISP]

Returns a sound which is up- or down-sampled to srate. Interpolation is linear, and no prefiltering is
applied in the down-sample case, so aliasing may occur. See also resample.

lfo(freq [, duration, table, phase]) [SAL]
(lfo freq duration table phase) [LISP]

Just like osc (below) except this computes at the *control-srate* and frequency is specified in
Hz. Initial phase is specified in degrees, defaulting to zero. The *transpose* and *sustain* is not
applied. The effect of time warping is to warp the starting and ending times. The signal itself will have
a constant unwarped frequency.

fmlfo(freq [, table, phase]) [SAL]
(fmlfo freq [table phase]) [LISP]

A low-frequency oscillator that computes at the *control-srate* using a sound to specify a time-
varying frequency in Hz. Initial phase is a FLONUM in degrees. The duration of the result is determined
by freq.

maketable(sound) [SAL]
(maketable sound) [LISP]

Assumes that the samples in sound constitute one period of a wavetable, and returns a wavetable
suitable for use as the table argument to the osc function (see below). Currently, tables are limited
to 100,000,000 samples. This limit is the compile-time constant max_table_len set in sound.h. A
wavetable is a list of the form

(sound pitch-number periodic)

where the first element is a sound, the second is the pitch of the sound (this is not redundant, because
the sound may represent any number of periods), and the third element is T if the sound is one period
of a periodic signal, or nil if the sound is a sample that should not be looped. Wavetables are used by
osc, osc, hzosc, amosc, fmosc, lfo, and fmlfo.

build-harmonic(n, table-size) [SAL]
(build-harmonic n table-size) [LISP]

Intended for constructing wavetables, this function returns a sound of length table-size samples
containing n periods of a sinusoid. These can be scaled and summed to form a waveform with the
desired harmonic content. See page 15 for an example. A scaled sum of these harmonics can be passed
to maketable to construct a wavetable suitable for osc and other oscillators.

control-warp(warp-fn, signal, [wrate]) [SAL]
(control-warp warp-fn signal wrate) [LISP]

Applies a warp function warp-fn to signal using function composition. If wrate is omitted, linear
interpolation is used. warp-fn is a mapping from score (logical) time to real time, and signal is a
function from score time to real values. The result is a function from real time to real values at a sample
rate of *control-srate*. See sound-warp for an explanation of wrate and high-quality warping.

v 3.24 78

Nyquist Reference Manual Chapter 7. Nyquist Functions

mult(beh1, beh2, ...) [SAL]
(mult beh1 beh2 ...) [LISP]

Returns the product of behaviors. The arguments may also be numbers, in which case simple multipli-
cation is performed. If a number and sound are mixed, the scale function is used to scale the sound
by the number. When sounds are multiplied, the resulting sample rate is the maximum sample rate of
the factors.

prod(beh1, beh2, ...) [SAL]
(prod beh1 beh2 ...) [LISP]

Same as mult.

pan(sound, where) [SAL]
(pan sound where) [LISP]

Pans sound (a behavior) according to where (another behavior or a number). Sound must be mono-
phonic. Where may be a monophonic sound (e.g. (ramp) or simply a number (e.g. 0.5). In either
case, where should range from 0 to 1, where 0 means pan completely left, and 1 means pan completely
right. For intermediate values, the sound to each channel is scaled linearly. Presently, pan does not
check its arguments carefully.

prod(beh1, beh2, ...) [SAL]
(prod beh1 beh2 ...) [LISP]

Same as mult.

resample(sound, srate) [SAL]
(resample sound srate) [LISP]

Similar to force-srate, except high-quality interpolation is used to prefilter and reconstruct the signal
at the new sample rate. Also, the result is scaled by 0.95 to reduce problems with clipping. (See also
sound-warp.)

scale(scale, sound) [SAL]
(scale scale sound) [LISP]

Scales the amplitude of sound by the factor scale. Identical function to snd-scale, except that it
handles multichannel sounds. Sample rates, start times, etc. are taken from sound.

scale-db(db, sound) [SAL]
(scale-db db sound) [LISP]

Scales the amplitude of sound by the factor db, expressed in decibels. Sample rates, start times, etc.
are taken from sound.

scale-srate(sound, scale) [SAL]
(scale-srate sound scale) [LISP]

Scales the sample rate of sound by scale factor. This has the effect of linearly shrinking or stretching
time (the sound is not upsampled or downsampled). This is a special case of snd-xform (see Section
7.6.2).

v 3.24 79

Nyquist Reference Manual Chapter 7. Nyquist Functions

Figure 7.1: The shift-time function shifts a sound in time according to its shift argument.

shift-time(sound, shift) [SAL]
(shift-time sound shift) [LISP]

Shift sound by shift seconds. If the sound is

See Figure 7.1. This is a special case of snd-xform (see Section 7.6.2).

sound-warp(warp-fn, signal [, wrate]) [SAL]
(sound-warp warp-fn signal [wrate]) [LISP]

Applies a warp function warp-fn to signal using function composition. If the optional parameter wrate
is omitted or NIL, linear interpolation is used. Otherwise, high-quality sample interpolation is used,
and the result is scaled by 0.95 to reduce problems with clipping (interpolated samples can exceed the
peak values of the input samples.) warp-fn is a mapping from score (logical) time to real time, and
signal is a function from score time to real values. The result is a function from real time to real values
at a sample rate of *sound-srate*. See also control-warp.

If wrate is not NIL, it must be a number. The parameter indicates that high-quality resampling should
be used and specifies the sample rate for the inverse of warp-fn. Use the lowest number you can. (See
below for details.) Note that high-quality resampling is much slower than linear interpolation.

To perform high-quality resampling by a fixed ratio, as opposed to a variable ratio allowed in
sound-warp, use scale-srate to stretch or shrink the sound, and then resample to restore the
original sample rate.

Sound-warp and control-warp both take the inverse of warp-fn to get a function from real time to
score time. Each sample of this inverse is thus a score time; signal is evaluated at each of these score
times to yield a value, which is the desired result. The sample rate of the inverse warp function is
somewhat arbitrary. With linear interpolation, the inverse warp function sample rate is taken to be the
output sample rate. Note, however, that the samples of the inverse warp function are stored as 32-bit
floats, so they have limited precision. Since these floats represent sample times, rounding can be a

v 3.24 80

Nyquist Reference Manual Chapter 7. Nyquist Functions

problem. Rounding in this case is equivalent to adding jitter to the sample times. Nyquist ignores this
problem for ordinary warping, but for high-quality warping, the jitter cannot be ignored.

The solution is to use a rather low sample rate for the inverse warp function. Sound-warp can then
linearly interpolate this signal using double-precision floats to minimize jitter between samples. The
sample rate is a compromise: a low sample rate minimizes jitter, while a high sample rate does a better
job of capturing detail (e.g. rapid fluctuations) in the warp function. A good rule of thumb is to use at
most 1,000 to 10,000 samples for the inverse warp function. For example, if the result will be 1 minute
of sound, use a sample rate of 3000 samples / 60 seconds = 50 samples/second. Because Nyquist
has no advance information about the warp function, the inverse warp function sample rate must be
provided as a parameter. When in doubt, just try something and let your ears be the judge.

integrate(signal) [SAL]
(integrate signal) [LISP]

Computes the integral of signal. The start time, sample rate, etc. are taken from signal.

slope(signal) [SAL]
(slope signal) [LISP]

Computes the first derivative (slope) of signal. The start time, sample rate, etc. are taken from signal.

7.2.2.1 Oscillators

osc(pitch [, duration, table, phase]) [SAL]
(osc pitch [duration table phase]) [LISP]

Returns a sound which is the table oscillated at pitch for the given duration, starting with the phase
(in degrees). Defaults are: duration 1.0 (second), table *table*, phase 0.0. The default value of
table is a sinusoid. Duration is stretched by *warp* and *sustain*, amplitude is nominally 1,
but scaled by *loud* (in dB), the start time is logical time 0, transformed by *warp*, and the sample
rate is *sound-srate*. The effect of time-warping is to warp the starting and ending times only; the
signal has a constant unwarped frequency.
Note 1: A table is 3-element list. See maketable for a detailed description.
Note 2: in the current implementation, it is assumed that the output should be periodic. See snd-down
and snd-up for resampling one-shot sounds to a desired sample rate. A future version of osc will
handle both cases.
Note 3: When osc is called, memory is allocated for the table, and samples are copied from the sound
(the first element of the list which is the table parameter) to the memory. Every instance of osc has a
private copy of the table, so the total storage can become large in some cases, for example in granular
synthesis with many instances of osc. In some cases, it may make sense to use snd-flatten (see
Section 7.1.3) to cause the sound to be fully realized, after which the osc and its table memory can be
reclaimed by garbage collection. The partial function (see below) does not need a private table and
does not use much space.

v 3.24 81

Nyquist Reference Manual Chapter 7. Nyquist Functions

partial(pitch, env) [SAL]
(partial pitch env) [LISP]

Returns a sinusoid at the indicated pitch; the sound is multiplied by env. The start time and duration
are taken from env, which is of course subject to transformations. The sample rate is *sound-srate*.
The partial function is faster than osc.

sine(pitch [, duration]) [SAL]
(sine pitch [duration]) [LISP]

Returns a sinusoid at the indicated pitch. The sample rate is *sound-srate*. This function is like
osc with respect to transformations. The sine function is faster than osc.

hzosc(hz [, table, phase]) [SAL]
(hzosc hz [table phase]) [LISP]

Returns a sound which is the table oscillated at hz starting at phase degrees. The default table is
table and the default phase is 0.0 degrees. The default duration is 1.0, but this is stretched as in
osc (see above). The hz parameter may be a SOUND, in which case the duration of the result is the
duration of hz. The sample rate is *sound-srate*.

osc-saw(hz) [SAL]
(osc-saw hz) [LISP]

Returns a sawtooth waveshape at the indicated frequency (in Hertz). The sample rate is
sound-srate. The hz parameter may be a sound as in hzosc (see above).

osc-tri(hz) [SAL]
(osc-tri hz) [LISP]

Returns a triangle waveshape at the indicated frequency (in Hertz). The sample rate is *sound-srate*.
The hz parameter may be a sound as in hzosc (see above).

osc-pulse(hz, bias [, compare-shape]) [SAL]
(osc-pulse hz bias [compare-shape]) [LISP]

Returns a square pulse with variable width at the indicated frequency (in Hertz). The bias parameter
controls the pulse width and should be between -1 and +1, giving a pulse width from 0% (always at -1)
to 100% (always at +1). When bias is zero, a square wave is generated. Bias may be a SOUND to create
varying pulse width. If bias changes rapidly, strange effects may occur. The optional compare-shape
defaults to a hard step at zero, but other shapes may be used to achieve non-square pulses. The
osc-pulse behavior is written in terms of other behaviors and defined in the file nyquist.lsp using
just a few lines of code. Read the code for the complete story.

amosc(pitch, modulation [, table, phase]) [SAL]
(amosc pitch modulation [table phase]) [LISP]

Returns a sound which is table oscillated at pitch. The output is multiplied by modulation for the
duration of the sound modulation. osc-table defaults to *table*, and phase is the starting phase
(default 0.0 degrees) within osc-table. The sample rate is *sound-srate*.

v 3.24 82

Nyquist Reference Manual Chapter 7. Nyquist Functions

fmosc(pitch, modulation [, table, phase]) [SAL]
(fmosc pitch modulation [table phase]) [LISP]

Returns a sound which is table oscillated at pitch plus modulation for the duration of the sound
modulation. osc-table defaults to *table*, and phase is the starting phase (default 0.0 degrees) within
osc-table. The modulation is expressed in hz, e.g. a sinusoid modulation signal with an amplitude of
1.0 (2.0 peak to peak), will cause a +/- 1.0 hz frequency deviation in sound. Negative frequencies are
correctly handled. The sample rate is *sound-srate*.

fmfb(pitch, index [, dur]) [SAL]
(fmfb pitch index [dur]) [LISP]

Returns a sound generated by feedback FM synthesis. The pitch parameter (given in the usual half-step
units) controls the fundamental frequency. The index is the amount of feedback, which may be a
SOUND or a FLONUM. If index is a FLONUM, dur must be provided (a FLONUM) to specify the duration.
Otherwise, dur is ignored if present and the duration is determined by that of index. The sample rate
is *sound-srate*. A sinusoid table is used. If index is below 1.1, this generates a sawtooth-like
waveform.

buzz(n, pitch, modulation) [SAL]
(buzz n pitch modulation) [LISP]

Returns a sound with n harmonics of equal amplitude and a total amplitude of 1.0, using a well-known
function of two cosines. If n (an integer) is less than 1, it is set to 1. Aliasing will occur if n is too
large. The pitchspecifies the fundamental frequency (a number, in steps) assuming no modulation. The
duration is determined by the duration of the sound modulation, which is a frequency modulation term
expressed in Hz (see Section 7.2.2.1). Negative frequencies are correctly handled. The sample rate is
sound-srate.

pluck(pitch [, duration, final-amplitude]) [SAL]
(pluck pitch [duration final-amplitude]) [LISP]

Returns a sound at the given pitch created using a modified Karplus-Strong plucked string algorithm.
The tone decays from an amplitude of about 1.0 to about final-amplitude in duration seconds. The
default values are to decay to 0.001 (-60dB) in 1 second. The sample rate is *sound-srate*.

siosc(pitch, modulation, tables) [SAL]
(siosc pitch modulation tables) [LISP]

Returns a sound constructed by interpolating through a succession of periodic waveforms. The
frequency is given (in half steps) by pitch to which a modulation signal (in hz) is added, exactly as
in fmosc. The tables specify a list of waveforms as follows: (table0 time1 table2 ... timeN tableN),
where each table is a sound representing one period. Each time is a time interval measured from
the starting time. The time is scaled by the nominal duration (computed using (local-to-global
(get-sustain))) to get the actual time. Note that this implies linear stretching rather than continuous
timewarping of the interpolation or the breakpoints. The waveform is table0 at the starting time, table1
after time1 (scaled as described), and so on. The duration and logical stop time is given by modulation.

v 3.24 83

Nyquist Reference Manual Chapter 7. Nyquist Functions

If modulation is shorter than timeN, then the full sequence of waveforms is not used. If modulation is
longer than timeN, tableN is used after timeN without further interpolation.

sampler(pitch, modulation [, sample, npoints]) [SAL]
(sampler pitch modulation [sample npoints]) [LISP]

Returns a sound constructed by reading a sample from beginning to end and then splicing on copies
of the same sound from a loop point to the end. The pitch and modulation parameters are used as in
fmosc described above. The optional sample (which defaults to 2048-point sinusoid) is a list of the
form

(sound pitch-number loop-start)

where the first element is a sound containing the sample, the second is the pitch of the sample, and
the third element is the time of the loop point. If the loop point is not in the bounds of the sound, it is
set to zero. The optional npoints specifies how many points should be used for sample interpolation.
Currently this parameter defaults to 2 and only 2-point (linear) interpolation is implemented. It is an
error to modulate such that the frequency is negative. Note also that the loop point may be fractional.
The sample rate is *sound-srate*.

7.2.2.2 Piece-wise Approximations

There are a number of related behaviors for piece-wise approximations to functions. The simplest of these,
pwl was mentioned earlier in the manual. It takes a list of breakpoints, assuming an initial point at (0, 0), and
a final value of 0. An analogous piece-wise exponential function, pwe, is provided. Its implicit starting and
stopping values are 1 rather than 0 because exponential decays never reach zero. This inability to reach zero
can be addressed by a pseudo-exponential function, pwz, whose design was borrowed from the ZynAddSubFx
software synthesizer, where we add a small bias (0.01) to breakpoints, compute the exponential envelope
between these new breakpoints, then subtract 0.01 so that the envelope can actually decay all the way to
zero. These curves are very close to exponential (within 0.01) until they approach zero, where they become
essentially linear. Like pwl (linear), the pwz envelopes assume an initial point at (0, 0) and a final value
of 0. For amplitude envelopes, the linear-attack option for the pwz variants is suggested for a more
natural-sounding envelope.

Each of these three forms has variants. You can specify the initial and final values (instead of taking the
default). You can specify time in intervals rather than cummulative time. Finally, you can pass a list rather
than an argument list. This leads to 16 versions, as shown in Figure 7.2.

All of these functions are implemented in terms of pwl (see nyquist.lsp for the implementations. There
are infinite opportunities for errors in these functions: if you leave off a data point, try to specify points in
reverse order, try to create an exponential that goes to zero or negative values, or many other bad things, the
behavior is not well-defined. Nyquist should not crash, but Nyquist does not necessarily attempt to report
errors at this time.

v 3.24 84

Nyquist Reference Manual Chapter 7. Nyquist Functions

Piece-wise Linear Functions:
Cummulative Time:

Default initial point at (0, 0), final value at 0:
pwl
pwl-list

Explicit initial value:
pwlv
pwlv-list

Relative Time:
Default initial point at (0, 0), final value at 0:

pwlr
pwlr-list

Explicit initial value:
pwlvr
pwlvr-list

Piece-wise Exponential Functions:
Cummulative Time:

Default initial point at (0, 1), final value at 1:
pwe
pwe-list

Explicit initial value:
pwev
pwev-list

Relative Time:
Default initial point at (0, 1), final value at 1:

pwer
pwer-list

Explicit initial value:
pwevr
pwevr-list

Piece-wise Pseudo-Exponential Functions with Bias:
Cummulative Time:

Default initial point at (0, 0), final value at 0:
pwz
pwz-list

Explicit initial value:
pwzv
pwzv-list

Relative Time:
Default initial point at (0, 0), final value at 0:

pwzr
pwzr-list

Explicit initial value:
pwzvr
pwzvr-list

Figure 7.2: Variants of piece-wise functions.

v 3.24 85

Nyquist Reference Manual Chapter 7. Nyquist Functions

pwl(t1, l1, t2, l2, ... tn) [SAL]
(pwl t1 l1 t2 l2 ... tn) [LISP]

Creates a piece-wise linear envelope with breakpoints at (0, 0), (t1, l1), (t2, l2), ... (tn, 0). The breakpoint
times are scaled linearly by the value of *sustain* (if *sustain* is a SOUND, it is evaluated once at
the starting time of the envelope). Each breakpoint time is then mapped according to *warp*. The result
is a linear interpolation (unwarped) between the breakpoints. The sample rate is *control-srate*.
Breakpoint times are quantized to the nearest sample time. If you specify one or more breakpoints
withing one sample period, pwl attempts to give a good approximation to the specified function. In
particular, if two breakpoints are simultaneous, pwl will move one of them to an adjacent sample,
producing a steepest possible step in the signal. The exact details of this “breakpoint munging” is
subject to change in future versions. Please report any cases where breakpoint lists give unexpected
behaviors. The author will try to apply the “principle of least surprise” to the design. Note that the
times are relative to 0; they are not durations of each envelope segment.

pwl-list(breakpoints) [SAL]
(pwl-list breakpoints) [LISP]

If you have a list of breakpoints, you can use apply to apply the pwl function to the breakpoints, but if
the list is very long (hundreds or thousands of points), you might get a stack overflow because XLISP
has a fixed-size argument stack. Instead, call pwl-list, passing one argument, the list of breakpoints.

pwlv(l1, t2, l2, t3, l3, ... tn, ln) [SAL]
(pwlv l1 t2 l2 t3 l3 ... tn ln) [LISP]

Creates a piece-wise linear envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn, ln).
Otherwise, the behavior is like that of pwl.

pwlv-list(breakpoints) [SAL]
(pwlv-list breakpoints) [LISP]

A version of pwlv that takes a single list of breakpoints as its argument. See pwl-list above for the
rationale.

pwlr(i1, l1, i2, l2, ... in) [SAL]
(pwlr i1 l1 i2 l2 ... in) [LISP]

Creates a piece-wise linear envelope with breakpoints at (0, 0), (t1, l1), (t2, l2), ... (tn, 0), where tj is the
sum of i1 through ij. In other words, the breakpoint times are specified in terms of intervals rather than
cummulative time. Otherwise, the behavior is like that of pwl.

pwlr-list(breakpoints) [SAL]
(pwlr-list breakpoints) [LISP]

A version of pwlr that takes a single list of breakpoints as its argument. See pwl-list above for the
rationale.

pwlvr(l1, i2, l2, i3, i3, ... in, ln) [SAL]
(pwlvr l1 i2 l2 i3 i3 ... in ln) [LISP]

Creates a piece-wise linear envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn, ln, where
tj is the sum of i2 through ij. In other words, the breakpoint times are specified in terms of intervals
rather than cummulative time. Otherwise, the behavior is like that of pwlv.

v 3.24 86

Nyquist Reference Manual Chapter 7. Nyquist Functions

pwlvr-list(breakpoints) [SAL]
(pwlvr-list breakpoints) [LISP]

A version of pwlvr that takes a single list of breakpoints as its argument. See pwl-list above for the
rationale.

pwe(t1, l1, t2, l2, ... tn) [SAL]
(pwe t1 l1 t2 l2 ... tn) [LISP]

Creates a piece-wise exponential envelope with breakpoints at (0, 1), (t1, l1), (t2, l2), ... (tn, 1). Expo-
nential segments means that the ratio of values from sample to sample is constant within the segment.
(The current implementation actually takes the log of each value, computes a piece-wise exponential
from the points using pwl, then exponentiates each resulting sample. A faster implementation is
certainly possible!) Breakpoint values (lj) must be greater than zero. Otherwise, this function is
similar to pwl, including stretch by *sustain*, mapping according to *warp*, sample rate based on
control-srate, and "breakpoint munging" (see pwl described above). Default initial and final
values are of dubious value with exponentials. See the pwz functions which allow decay to zero, and
pwev which has explicit initial and final values.

pwe-list(breakpoints) [SAL]
(pwe-list breakpoints) [LISP]

A version of pwe that takes a single list of breakpoints as its argument. See pwl-list above for the
rationale.

pwev(l1, t2, l2, t3, t3, ... tn, ln) [SAL]
(pwev l1 t2 l2 t3 t3 ... tn ln) [LISP]

Creates a piece-wise exponential envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn, ln).
Otherwise, the behavior is like that of pwe.

pwev-list(breakpoints) [SAL]
(pwev-list breakpoints) [LISP]

A version of pwev that takes a single list of breakpoints as its argument. See pwl-list above for the
rationale.

pwer(i1, l1, i2, l2, ... in) [SAL]
(pwer i1 l1 i2 l2 ... in) [LISP]

Creates a piece-wise exponential envelope with breakpoints at (0, 1), (t1, l1), (t2, l2), ... (tn, 1), where tj
is the sum of i1 through ij. In other words, the breakpoint times are specified in terms of intervals rather
than cummulative time. Otherwise, the behavior is like that of pwe. Consider using pwerv instead of
this one.

pwer-list(breakpoints) [SAL]
(pwer-list breakpoints) [LISP]

A version of pwer that takes a single list of breakpoints as its argument. See pwl-list above for the
rationale.

pwevr(l1, i2, l2, i3, i3, ... in, ln) [SAL]
(pwevr l1 i2 l2 i3 i3 ... in ln) [LISP]

Creates a piece-wise exponential envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn,

v 3.24 87

Nyquist Reference Manual Chapter 7. Nyquist Functions

ln, where tj is the sum of i2 through ij. In other words, the breakpoint times are specified in terms of
intervals rather than cummulative time. Otherwise, the behavior is like that of pwev. Note that this is
similar to the csound GEN05 generator. Which is uglier, GEN05 or pwevr?

pwevr-list(breakpoints) [SAL]
(pwevr-list breakpoints) [LISP]

A version of pwevr that takes a single list of breakpoints as its argument. See pwl-list above for the
rationale.

pwz(t1, l1, t2, l2, ... tn, [bias: bias], [linear-attack: linatk]) [SAL]
(pwz t1 l1 t2 l2 ... tn [:bias bias] [:linear-attack linatk]) [LISP]

Creates a piece-wise pseudo-exponential envelope with breakpoints at (0, 0), (t1, l1), (t2, l2), ... (tn,
0). Each breakpoint value is first incremented by bias, then interpolated with exponentials as in
pwe (see above), then bias is subtracted from all samples so that the envelope passes through the
original breakpoints as specified, including decay to zero. Breakpoint values (lj) must be non-negative.
Otherwise, this function is similar to pwl, including stretch by *sustain*, mapping according to
warp, sample rate based on *control-srate*, and "breakpoint munging" (see pwl described
above). The linear-attack keyword parameter, if true (default is false), causes a linear interpolation
from (0, 0) to (t1, l1) rather than exponential. The bias keyword parameter is optional, and defaults to
0.01 (about -40dB). As bias grows large, the “half-life” of the decay becomes large, so the decay is
more linear. Even large values such as 1 are possible. As bias grows small, the “half-life” of the decay
becomes small, so the decay is more rapid. Example: If bias is 0.01 (default), a decay from 1 to 0 in 1
second will decay to about -20dB in 0.5 seconds. If bias is 0.0001 (-80dB), the envelope will decay to
about -20dB in only 0.25 seconds. You can think of bias as approximately how much attenuation you
want to occur exponentially before the final decay to zero where the envelope becomes more linear.
With bias values at or below 0.01, the “linear part” occurs when the signal is barely audible anyway.

pwz-list(breakpoints, [bias: bias], [linear-attack: linatk]) [SAL]
(pwz-list breakpoints [:bias bias] [:linear-attack linatk]) [LISP]

A version of pwz that takes a single list of breakpoints as its argument. See pwl-list above for the
rational for this “-list” form of pwz and for an explanation of the linear-attack keyword parameter.

pwzv(l1, t2, l2, t3, t3, ... tn, ln, [bias: bias], [linear-attack: linatk]) [SAL]
(pwzv l1 t2 l2 t3 t3 ... tn ln [:bias bias] [:linear-attack linatk]) [LISP]

Creates a piece-wise pseudo-exponential envelope with breakpoints at (0, l1), (t2, l2), etc., ending with
(tn, ln). If the linear-attack parameter is true (default is false), linear interpolation is used from (0,
l1) to (t2, l2). Otherwise, the behavior is like that of pwz.

pwzv-list(breakpoints, [bias: bias], [linear-attack: linatk]) [SAL]
(pwzv-list breakpoints [:bias bias] [:linear-attack linatk]) [LISP]

A version of pwzv that takes a single list of breakpoints as its argument. See pwl-list above for the
rational for this “-list” form of pwzv.

v 3.24 88

Nyquist Reference Manual Chapter 7. Nyquist Functions

pwzr(i1, l1, i2, l2, ... in, [bias: bias], [linear-attack: linatk]) [SAL]
(pwzr i1 l1 i2 l2 ... in [:bias bias] [:linear-attack linatk]) [LISP]

Creates a piece-wise pseudo-exponential envelope with breakpoints at (0, 0), (t1, l1), (t2, l2), ... (tn,
0), where tj is the sum of i1 through ij. In other words, the breakpoint times are specified in terms of
intervals rather than cummulative time. Otherwise, the behavior is like that of pwz.

pwzr-list(breakpoints, [bias: bias], [linear-attack: linatk]) [SAL]
(pwzr-list breakpoints [:bias bias] [:linear-attack linatk]) [LISP]

A version of pwzr that takes a single list of breakpoints as its argument. See pwl-list above for the
rational for this “-list” form of pwzr.

pwzvr(l1, i2, l2, i3, i3, ... in, ln, [bias: bias], [linear-attack: linatk]) [SAL]
(pwzvr l1 i2 l2 i3 i3 ... in ln [:bias bias] [:linear-attack linatk]) [LISP]

Creates a piece-wise exponential envelope with breakpoints at (0, l1), (t2, l2), etc., ending with (tn,
ln, where tj is the sum of i2 through ij. In other words, the breakpoint times are specified in terms of
intervals rather than cummulative time. Otherwise, the behavior is like that of pwzv. See pwz (above)
for an explanation of bias and linatk.

pwzvr-list(breakpoints, [bias: bias], [linear-attack: linatk]) [SAL]
(pwzvr-list breakpoints [:bias bias] [:linear-attack linatk]) [LISP]

A version of pwzvr that takes a single list of breakpoints as its argument. See pwl-list above for the
rational for this “-list” form of pwzvr.

7.2.2.3 Filter Behaviors

alpass(sound, decay, hz [, minhz]) [SAL]
(alpass sound decay hz [minhz]) [LISP]

Applies an all-pass filter to sound. This all-pass filter creates a delay effect without the resonances of a
comb filter. The decay time of the filter is given by decay. The hz parameter must be a number or sound
greater than zero. It is used to compute delay, which is then rounded to the nearest integer number of
samples (so the frequency is not always exact. Higher sampling rates yield better delay resolution.) The
decay may be a sound or a number. In either case, it must also be positive. (Implementation note: an
exponentiation is needed to convert decay into the feedback parameter, and exponentiation is typically
more time-consuming than the filter operation itself. To get high performance, provide decay at a low
sample rate.) The resulting sound will have the start time, sample rate, etc. of sound. If hz is of type
SOUND, the delay may be time-varying. Linear interpolation is then used for fractional sample delay,
but it should be noted that linear interpolation implies a low-pass transfer function. Thus, this filter
may behave differently with a constant SOUND than it does with a FLONUM value for hz. In addition, if
hz is of type SOUND, then minhz is required. The hz parameter will be clipped to be greater than minhz,
placing an upper bound on the delay buffer length.

comb(sound, decay, hz) [SAL]
(comb sound decay hz) [LISP]

Applies a comb filter to sound. A comb filter emphasizes (resonates at) frequencies that are multiples

v 3.24 89

Nyquist Reference Manual Chapter 7. Nyquist Functions

of a hz. The decay time of the resonance is given by decay. This is a variation on feedback-delay
(see below). The hz parameter must be a number greater than zero. It is used to compute delay, which
is then rounded to the nearest integer number of samples (so the frequency is not always exact. Higher
sampling rates yield better delay resolution.) The decay may be a sound or a number. In either case, it
must also be positive. (Implementation note: an exponentiation is needed to convert decay into the
feedback parameter for feedback-delay, and exponentiation is typically more time-consuming than
the filter operation itself. To get high performance, provide decay at a low sample rate.) The resulting
sound will have the start time, sample rate, etc. of sound.

congen(gate, risetime, falltime) [SAL]
(congen gate risetime falltime) [LISP]

Implements an analog synthesizer-style contour generator. The input gate normally goes from 0.0 to
1.0 to create an attack and from 1.0 to 0.0 to start a release. During the attack (output is increasing),
the output converges half-way to gate in risetime (a FLONUM) seconds. During the decay, the half-time
is falltime seconds. The sample rate, start time, logical stop, and terminate time all come from gate.
If you want a nice decay, be sure that the gate goes to zero and stays there for awhile before gate
terminates, because congen (and all Nyquist sounds) go immediately to zero at termination time. For
example, you can use pwl to build a pulse followed by some zero time:

(pwl 0 1 duty 1 duty 0 1)

Assuming duty is less than 1.0, this will be a pulse of duration duty followed by zero for a total duration
of 1.0.

(congen (pwl 0 1 duty 1 duty 0 1) 0.01 0.05)

will have a duration of 1.0 because that is the termination time of the pwl input. The decaying release
of the resulting envelope will be truncated to zero at time 1.0. (Since the decay is theoretically infinite,
there is no way to avoid truncation, although you could multiply by another envelope that smoothly
truncates to zero in the last millisecond or two to get both an exponential decay and a smooth final
transition to zero.)

convolve(sound, response) [SAL]
(convolve sound response) [LISP]

Convolves two signals. The first can be any length, but the total space required is proportional to the
length of response. The start time, logical stop time, and sample rate of the output match those of the
input sound. The physical stop time of the result is the physical stop time of sound plus the duration of
the response so that the result sound includes the “tail” of the filter response. The response is linearly
interpolated if necessary to have same sample rate as sound. The current implementation uses a “fast
convolution” algorithm with a maximum FFT size of 64K, which after zero padding allows up to 32K
point convolutions. If the impulse response is longer, it is broken into multiple blocks of 32K samples.
There is no limit on the length of the impulse response. This is an Order(N x M) algorithm where N and
M are the number of 32K sample blocks in the sound and response, respectively. Further discussion
and examples can be found in nyquist/lib/convolve/convolution.html.

v 3.24 90

Nyquist Reference Manual Chapter 7. Nyquist Functions

feedback-delay(sound, delay, feedback) [SAL]
(feedback-delay sound delay feedback) [LISP]

Applies feedback delay to sound. The delay must be a number (in seconds). It is rounded to the nearest
sample to determine the length of the delay. The sample rate is the maximum from sound and feedback
(if feedback is also a sound). The amound of feedback should be less than one to avoid an exponential
increase in amplitude. The start time and stop time, and logical stop time are taken from sound. Since
output is truncated at the stop time of sound, you may want to append some silence to sound to give
the filter time to decay.

lp(sound, cutoff) [SAL]
(lp sound cutoff) [LISP]

Filters sound using a first-order Butterworth low-pass filter. Cutoff may be a float or a signal (for
time-varying filtering) and expresses hertz. Filter coefficients (requiring trig functions) are recomputed
at the sample rate of cutoff. The resulting sample rate, start time, etc. are taken from sound.

tone(sound, cutoff) [SAL]
(tone sound cutoff) [LISP]

No longer defined; use lp instead, or define it by adding (setfn tone lp) to your program.

hp(sound, cutoff) [SAL]
(hp sound cutoff) [LISP]

Filters sound using a first-order Butterworth high-pass filter. Cutoff may be a float or a signal (for
time-varying filtering) and expresses hertz. Filter coefficients (requiring trig functions) are recomputed
at the sample rate of cutoff. This filter is an exact complement of lp.

atone(sound, cutoff) [SAL]
(atone sound cutoff) [LISP]

No longer defined; use hp instead, or define it by adding (setfn atone hp) to your program.

reson(sound, center, bandwidth [, n]) [SAL]
(reson sound center bandwidth [n]) [LISP]

Apply a resonating filter to sound with center frequency center (in hertz), which may be a float or a
signal. Bandwidth is the filter bandwidth (in hertz), which may also be a signal. Filter coefficients
(requiring trig functions) are recomputed at each new sample of either center or bandwidth, and
coefficients are not interpolated. The last parameter n specifies the type of normalization as in Csound:
A value of 1 specifies a peak amplitude response of 1.0; all frequencies other than hz are attenuated. A
value of 2 specifies the overall RMS value of the amplitude response is 1.0; thus filtered white noise
would retain the same power. A value of zero specifies no scaling. The resulting sample rate, start time,
etc. are taken from sound.

v 3.24 91

Nyquist Reference Manual Chapter 7. Nyquist Functions

One application of reson is to simulate resonances in the human vocal tract. See
nyquist/lib/voice/voice_synthesis.html for sample code and documentation.

areson(sound, center, bandwidth [, n]) [SAL]
(areson sound center bandwidth [n]) [LISP]

The areson filter is an exact complement of reson such that if both are applied to the same signal
with the same parameters, the sum of the results yeilds the original signal.

shape(signal, table, origin) [SAL]
(shape signal table origin) [LISP]

A waveshaping function. Use table as a function; apply the function to each sample of signal to yield a
new sound. Signal should range from -1 to +1. Anything beyond these bounds is clipped. Table is also
a sound, but it is converted into a lookup table (similar to table-lookup oscillators). The origin is a
FLONUM and gives the time which should be considered the origin of table. (This is important because
table cannot have values at negative times, but signal will often have negative values. The origin gives
an offset so that you can produce suitable tables.) The output at time t is:

table(origin + clip(signal(t))

where clip(x) = max(1, min(-1, x)). (E.g. if table is a signal defined over the interval [0, 2], then origin
should be 1.0. The value of table at time 1.0 will be output when the input signal is zero.) The output
has the same start time, sample rate, etc. as signal. The shape function will also accept multichannel
signals and tables.

Further discussion and examples can be found by installing the “distortion” extension with the Nyquis-
tIDE Extension Manager. The code will appear in nyquist/lib/distortion/distortion.html.
The shape function is also used to map frequency to amplitude to achieve a spectral envelope for
Shepard tones (install the “shepard” extension) in nyquist/lib/shepard/shepard.lsp.

biquad(signal, b0, b1, b2, a0, a1, a2) [SAL]
(biquad signal b0 b1 b2 a0 a1 a2) [LISP]

A fixed-parameter biquad filter. All filter coefficients are FLONUMs. See also lowpass2, highpass2,
bandpass2, notch2, allpass2, eq-lowshelf, eq-highshelf, eq-band, lowpass4, lowpass6,
highpass4, and highpass8 in this section for convenient variations based on the same filter. The
equations for the filter are: zn = sn + a1 * zn-1 + a2 * zn-2, and yn = zn * b0 + zn-1 * b1 + zn-2 * b2.

biquad-m(signal, b0, b1, b2, a0, a1, a2) [SAL]
(biquad-m signal b0 b1 b2 a0 a1 a2) [LISP]

A fixed-parameter biquad filter with Matlab sign conventions for a0, a1, and a2. All filter coefficients
are FLONUMs.

lowpass2(signal, hz [, q]) [SAL]
(lowpass2 signal hz [q]) [LISP]

A fixed-parameter, second-order lowpass filter based on snd-biquad. The cutoff frequency is given
by hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

v 3.24 92

Nyquist Reference Manual Chapter 7. Nyquist Functions

highpass2(signal, hz [, q]) [SAL]
(highpass2 signal hz [q]) [LISP]

A fixed-parameter, second-order highpass filter based on snd-biquad. The cutoff frequency is given
by hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

bandpass2(signal, hz [, q]) [SAL]
(bandpass2 signal hz [q]) [LISP]

A fixed-parameter, second-order bandpass filter based on snd-biquad. The center frequency is given
by hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

notch2(signal, hz [, q]) [SAL]
(notch2 signal hz [q]) [LISP]

A fixed-parameter, second-order notch filter based on snd-biquad. The center frequency is given by
hz (a FLONUM) and an optional Q factor is given by q (a FLONUM).

allpass2(signal, hz [, q]) [SAL]
(allpass2 signal hz [q]) [LISP]

A fixed-parameter, second-order allpass filter based on snd-biquad. The frequency is given by hz (a
FLONUM) and an optional Q factor is given by q (a FLONUM).

eq-lowshelf(signal, hz, gain [, slope]) [SAL]
(eq-lowshelf signal hz gain [slope]) [LISP]

A fixed-parameter, second-order bass shelving equalization (EQ) filter based on snd-biquad. The hz
parameter (a FLONUM)is the halfway point in the transition, and gain (a FLONUM) is the bass boost (or
cut) in dB. The optional slope (a FLONUM) is 1.0 by default, and response becomes peaky at values
greater than 1.0.

eq-highshelf(signal, hz, gain [, slope]) [SAL]
(eq-highshelf signal hz gain [slope]) [LISP]

A fixed-parameter, second-order treble shelving equalization (EQ) filter based on snd-biquad. The
hz parameter (a FLONUM)is the halfway point in the transition, and gain (a FLONUM) is the treble boost
(or cut) in dB. The optional slope (a FLONUM) is 1.0 by default, and response becomes peaky at values
greater than 1.0.

eq-band(signal, hz, gain, width) [SAL]
(eq-band signal hz gain width) [LISP]

A fixed- or variable-parameter, second-order midrange equalization (EQ) filter based on snd-biquad,
eq-band-ccc and eq-band-vvv. The hz parameter (a FLONUM) is the center frequency, gain (a
FLONUM) is the boost (or cut) in dB, and width (a FLONUM) is the half-gain width in octaves. Alternatively,
hz, gain, and width may be SOUNDs, but they must all have the same sample rate, e.g. they should all
run at the control rate or at the sample rate.

v 3.24 93

Nyquist Reference Manual Chapter 7. Nyquist Functions

lowpass4(signal, hz) [SAL]
(lowpass4 signal hz) [LISP]

A four-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM).

lowpass6(signal, hz) [SAL]
(lowpass6 signal hz) [LISP]

A six-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM).

lowpass8(signal, hz) [SAL]
(lowpass8 signal hz) [LISP]

An eight-pole Butterworth lowpass filter. The cutoff frequency is hz (a FLONUM).

highpass4(signal, hz) [SAL]
(highpass4 signal hz) [LISP]

A four-pole Butterworth highpass filter. The cutoff frequency is hz (a FLONUM).

highpass6(signal, hz) [SAL]
(highpass6 signal hz) [LISP]

A six-pole Butterworth highpass filter. The cutoff frequency is hz (a FLONUM).

highpass8(signal, hz) [SAL]
(highpass8 signal hz) [LISP]

An eight-pole Butterworth highpass filter. The cutoff frequency is hz (a FLONUM).

tapv(sound, offset, vardelay, maxdelay) [SAL]
(tapv sound offset vardelay maxdelay) [LISP]

A delay line with a variable position tap. Identical to snd-tapv. See it for details (page 120).

7.2.2.4 Effects

nrev(sound, decay, mix) [SAL]
(nrev sound decay mix) [LISP]

jcrev(sound, decay, mix) [SAL]
(jcrev sound decay mix) [LISP]

prcrev(sound, decay, mix) [SAL]
(prcrev sound decay mix) [LISP]

These reverbs (nrev, jcrev, and prcrev) are implemented in STK (running within Nyquist). nrev
derives from Common Music’s NRev, which consists of 6 comb filters followed by 3 allpass filters,
a lowpass filter, and another allpass in series followed by two allpass filters in parallel. jcrev is the

v 3.24 94

Nyquist Reference Manual Chapter 7. Nyquist Functions

John Chowning reverberator which is based on the use of networks of simple allpass and comb delay
filters. This reverb implements three series allpass units, followed by four parallel comb filters, and
two decorrelation delay lines in parallel at the output. prcrev is a Perry Cook’s reverberator which is
based on the Chowning/Moorer/Schroeder reverberators using networks of simple allpass and comb
delay filters. This one implements two series allpass units and two parallel comb filters. The sound
input may be single or multichannel. The decay time is in seconds, and mix sets the mixture of input
sound reverb sound, where 0.0 means input only (dry) and 1.0 means reverb only (wet).

stkchorus(sound, depth, freq, mix [, delay]) [SAL]
(stkchorus sound depth freq mix [delay]) [LISP]

Chorus implemented in STK. The input sound can be single or multichannel. The FLONUM parameters
depth and freq set the modulation depth from 0 to 1 and modulation frequency (in Hz), and mix sets the
mixture of input sound and chorused sound, where 0.0 means input sound only (dry) and 1.0 means
chorused sound only (wet). The parameter delay is a FIXNUM representing the median desired delay
length in samples.

pitshift(sound, shift, mix) [SAL]
(pitshift sound shift mix) [LISP]

A pitch shifter implemented in STK. The input sound, a single-channel or multichannel SOUND is
pitch-shifted by shift, a FLONUM ratio. A value of 1.0 means no shift. The parameter mix sets the
mixture of input and shifted sounds. A value of 0.0 means input only (dry) and a value of 1.0 means
shifted sound only (wet).

7.2.2.5 Physical Models

clarinet(step, breath-env) [SAL]
(clarinet step breath-env) [LISP]

A physical model of a clarinet from STK. The step parameter is a FLONUM that controls the tube length,
and the breath-env (a SOUND) controls the air pressure and also determines the length of the resulting
sound. The breath-env signal should range from zero to one.

clarinet-freq(step, breath-env, freq-env) [SAL]
(clarinet-freq step breath-env freq-env) [LISP]

A variation of clarinet that includes a variable frequency control, freq-env, which specifies frequency
deviation in Hz. The duration of the resulting sound is the minimum duration of breath-env and
freq-env. These parameters may be of type FLONUM or SOUND. FLONUMs are coerced into SOUNDs with a
nominal duration arbitrarily set to 30.

v 3.24 95

Nyquist Reference Manual Chapter 7. Nyquist Functions

clarinet-all(step, breath-env, freq-env, vibrato-freq, vibrato-gain,
reed-stiffness, noise) [SAL]

(clarinet-all step breath-env freq-env vibrato-freq vibrato-gain
reed-stiffness noise) [LISP]

A variation of clarinet-freq that includes controls vibrato-freq (a FLONUM for vibrato frequency
in Hertz), vibrato-gain (a FLONUM for the amount of amplitude vibrato), reed-stiffness (a FLONUM or
SOUND controlling reed stiffness in the clarinet model), and noise (a FLONUM or SOUND controlling
noise amplitude in the input air pressure). The vibrato-gain is a number from zero to one, where zero
indicates no vibrato, and one indicates a plus/minus 50% change in breath envelope values. Similarly,
the noise parameter ranges from zero to one where zero means no noise and one means white noise with
a peak amplitude of plus/minus 40% of the breath-env. The reed-stiffness parameter varies from zero to
one. The duration of the resulting sound is the minimum duration of breath-env, freq-env, reed-stiffness,
and noise. As with clarinet-freq, these parameters may be either FLONUMs or SOUNDs, and FLONUMs
are coerced to sounds with a nominal duration of 30.

sax(step, breath-env) [SAL]
(sax step breath-env) [LISP]

A physical model of a sax from STK. The step parameter is a FLONUM that controls the tube length,
and the breath-env controls the air pressure and also determines the length of the resulting sound. The
breath-env signal should range from zero to one.

sax-freq(step, breath-env, freq-env) [SAL]
(sax-freq step breath-env freq-env) [LISP]

A variation of sax that includes a variable frequency control, freq-env, which specifies frequency
deviation in Hz. The duration of the resulting sound is the minimum duration of breath-env and
freq-env. These parameters may be of type FLONUM or SOUND. FLONUMs are coerced into SOUNDs with a
nominal duration arbitrarily set to 30.

sax-all(step, breath-env, freq-env, vibrato-freq, vibrato-gain,
reed-stiffness, noise, blow-pos, reed-table-offset) [SAL]

(sax-all step breath-env freq-env vibrato-freq vibrato-gain
reed-stiffness noise blow-pos reed-table-offset) [LISP]

A variation of sax-freq that includes controls vibrato-freq (a FLONUM for vibrato frequency in Hertz),
vibrato-gain (a FLONUM for the amount of amplitude vibrato), reed-stiffness (a SOUND controlling reed
stiffness in the sax model), noise (a SOUND controlling noise amplitude in the input air pressure),
blow-pos (a SOUND controlling the point of excitation of the air column), and reed-table-offset (a SOUND
controlling a parameter of the reed model). The vibrato-gain is a number from zero to one, where zero
indicates no vibrato, and one indicates a plus/minus 50% change in breath envelope values. Similarly,
the noise parameter ranges from zero to one where zero means no noise and one means white noise
with a peak amplitude of plus/minus 40% of the breath-env. The reed-stiffness, blow-pos, and reed-
table-offset parameters all vary from zero to one. The duration of the resulting sound is the minimum
duration of breath-env, freq-env, reed-stiffness, noise, breath-env, blow-pos, and reed-table-offset.
As with sax-freq, these parameters may be either FLONUMs or SOUNDs, and FLONUMs are coerced to
sounds with a nominal duration of 30.

v 3.24 96

Nyquist Reference Manual Chapter 7. Nyquist Functions

flute(step, breath-env) [SAL]
(flute step breath-env) [LISP]

A physical model of a flute from STK. The step parameter is a FLONUM that controls the tube length,
and the breath-env controls the air pressure and also determines the starting time and length of the
resulting sound. The breath-env signal should range from zero to one.

flute-freq(step, breath-env, freq-env) [SAL]
(flute-freq step breath-env freq-env) [LISP]

A variation of flute that includes a variable frequency control, freq-env, which specifies frequency
deviation in Hz. The duration of the resulting sound is the minimum duration of breath-env and
freq-env. These parameters may be of type FLONUM or SOUND. FLONUMs are coerced into SOUNDs with
a nominal duration arbitrarily set to 30.

flute-all(step, breath-env, freq-env, vibrato-freq, vibrato-gain, jet-delay,
noise) [SAL]

(flute-all step breath-env freq-env vibrato-freq vibrato-gain jet-delay
noise) [LISP]

A variation of clarinet-freq that includes controls vibrato-freq (a FLONUM for vibrato frequency
in Hz), vibrato-gain (a FLONUM for the amount of amplitude vibrato), jet-delay (a FLONUM or SOUND
controlling jet delay in the flute model), and noise (a FLONUM or SOUND controlling noise amplitude in
the input air pressure). The vibrato-gain is a number from zero to one where zero means no vibrato,
and one indicates a plus/minus 50% change in breath envelope values. Similarly, the noise parameter
ranges from zero to one, where zero means no noise and one means white noise with a peak amplitude
of plus/minus 40% of the breath-env. The jet-delay is a ratio that controls a delay length from the
flute model, and therefore it changes the pitch of the resulting sound. A value of 0.5 will maintain the
pitch indicated by the step parameter. The duration of the resulting sound is the minimum duration of
breath-env, freq-env, jet-delay, and noise. These parameters may be either FLONUMs or SOUNDs, and
FLONUMs are coerced to sounds with a nominal duration of 30.

bowed(step, bowpress-env) [SAL]
(bowed step bowpress-env) [LISP]

A physical model of a bowed string instrument from STK. The step parameter is a FLONUM that controls
the string length, and the bowpress-env controls the bow pressure and also determines the duration of
the resulting sound. The bowpress-env signal should range from zero to one.

bowed-freq(step, bowpress-env, freq-env) [SAL]
(bowed-freq step bowpress-env freq-env) [LISP]

A variation of bowed that includes a variable frequency control, freq-env, which specifies frequency
deviation in Hz. The duration of the resulting sound is the minimum duration of bowpress-env and
freq-env. These parameters may be of type FLONUM or SOUND. FLONUMs are coerced into SOUNDs with a
nominal duration arbitrarily set to 30s.

v 3.24 97

Nyquist Reference Manual Chapter 7. Nyquist Functions

mandolin(step, dur, &optional detune) [SAL]
(mandolin step dur detune) [LISP]

A physical model of a plucked double-string instrument from STK. The step parameter is a FLONUM
wich specifies the desired pitch, dur means the duration of the resulting sound and detune is a FLONUM
that controls the relative detune of the two strings. A value of 1.0 means unison. The default value is
4.0. Note: body-size (see snd-mandolin does not seem to work correctly, so a default value is always
used by mandolin.

wg-uniform-bar(step, bowpress-env) [SAL]
(wg-uniform-bar step bowpress-env) [LISP]

wg-tuned-bar(step, bowpress-env) [SAL]
(wg-tuned-bar step bowpress-env) [LISP]

wg-glass-harm(step, bowpress-env) [SAL]
(wg-glass-harm step bowpress-env) [LISP]

wg-tibetan-bowl(step, bowpress-env) [SAL]
(wg-tibetan-bowl step bowpress-env) [LISP]

These sounds are presets for a Banded Wave Guide Percussion instrument implemented in STK. The
parameter step is a FLONUM that controls the resultant pitch, and bowpress-env is a SOUND ranging from
zero to one that controls a parameter of the model. In addition, bowpress-env determines the duration
of the resulting sound. (Note: The bowpress-env does not seems influence the timbral quality of the
resulting sound).

modalbar(preset, step, dur) [SAL]
(modalbar preset step dur) [LISP]

A physical model of a struck bar instrument implemented in STK. The parameter preset is one of
the symbols MARIMBA, VIBRAPHONE, AGOGO, WOOD1, RESO, WOOD2, BEATS, TWO-FIXED, or CLUMP. The
symbol must be quoted, e.g. for SAL syntax use quote(marimba), and for Lisp syntax use ’marimba.
The parameter step is a FLONUM that sets the pitch (in steps), and dur is the duration in seconds.

sitar(step, dur) [SAL]
(sitar step dur) [LISP]

A sitar physical model implemented in STK. The parameter step is a FLONUM that sets the pitch, and
dur is the duration.

stk-breath-env(dur, note-on note-off) [SAL]
(stk-breath-env dur note-on note-off) [LISP]

A simple envelope function intended for STK instruments such as CLARINET, where dur is the duration,
note-on is the attack time, and note-off is the decay time, all FLONUMs in seconds.

v 3.24 98

Nyquist Reference Manual Chapter 7. Nyquist Functions

7.2.2.6 Phase Vocoder

phasevocoder(s, map, [fftsize, hopsize, mode]) [SAL]
(phasevocoder s map [fftsize hopsize mode]) [LISP]

Phase vocoder: the input SOUND s is stretched in time according to the control signal (a SOUND)
map. The map parameter must be strictly non-decreasing. It specifies the input time for each time
in the output. E.g. if map at time 3 is 4, then the output at time 3 will sound like the input at time 4,
assuming s and map start at time 0. In the general case, s and map must start at the same time. The
phase vocoder operation is applied as if s and map started at time 0, and the result is shifted to start at
the same starting time as s and map. The fftsize is a FIXNUM and power of 2, indicating the size of
the analysis and synthesis windows in samples. The default is 2048. The hopsize is the hop size (in
samples, a FIXNUM) of the synthesis stage where overlapping windows are added. The hopsize should
be a power of 2 that is smaller than the fftsize. The default is the fftsize/8. Note that the analysis hopsize
is determined by the map. If the playback speed (slope of map) is too great, the analysis hopsize
will be large and the sound quality will suffer. You can always make the analysis hopsize smaller by
making the synthesis hopsize smaller (at the cost of greater computation). The mode is a FIXNUM
that defaults to 0, meaning a standard phase vocoder. A value of 1 invokes a phase computation that
attempts to reduce phase artifacts by preserving the phase relationships between peaks and nearby
bins. A value of 2 invokes a “robot voice” mode that assigns fixed phases and creates a constant pitch
(controlled by the hopsize) vocoder-like effect. (Thanks to M.C.Sharma for this idea.) A phase vocoder
constructs output from overlapped and added windowed IFFT frames. This presents a special problem
at the beginning and ending of the output sound. To output a sound starting at time t, the first frame is
centered at t + fftsize/2, so the output at t will smoothly rise from zero because all frames are smoothed
by a windowing function. Considerations are: (1) The output at time t will rise from zero rather than
being the sum of multiple overlapping windows; (2) if t maps to an input window that begins before the
start time of the input sound, the input window will be padded with zeros and may include an abrupt
onset if one exists at the start of the input sound.

pv-time-pitch(s, stretchfn, pitchfn, dur, [fftsize, hopsize, mode]) [SAL]
(pv-time-pitch s stretchfn pitchfn dur [fftsize hopsize mode]) [LISP]

Combines phase vocoder and resampling to perform simultaneous time stretching and pitch shifting.
The input SOUND s is stretched according to SOUND stretchfn and pitch-shifted according to SOUND
pitchfn. The approximate output duration should be specified by dur (which is used to optimize the
sample rate of computed control functions), and the remaining parameters fftsize, hopsize and mode are
passed to the phase vocoder (see phasevocoder above). The stretchfn gives the factor by which the
input should be stretched at each point in time; thus, the total duration is the integral of this function.
The pitchfn specifies the amount by which pitch should be shifted at each point in time. For example,
where pitchfn is 2, the sample rate will be doubled, increasing pitch and frequencies by an octave. The
phase vocoder is used to compensate for time stretching caused by resampling, so stretchfn and pitchfn
operate independently.

v 3.24 99

Nyquist Reference Manual Chapter 7. Nyquist Functions

7.2.2.7 More Behaviors

clip(sound, peak) [SAL]
(clip sound peak) [LISP]

Hard limit sound to the given peak, a positive number. The samples of sound are constrained between
an upper value of peak and a lower value of -peak. If sound is a number, clip will return sound limited
by peak. If sound is a multichannel sound, clip returns a multichannel sound where each channel is
clipped. The result has the type, sample rate, starting time, etc. of sound. Note: Many systems clip
output when converting to fixed-point audio, e.g. 16-bit samples. Instead Nyquist simply takes the
low-order 16 bits, allowing samples to “wrap around.” This sounds terrible, but that is the point: It is
hard to miss when your samples go out of range. One use of this function is to clip rather than wrap
output. Warning: A floating point sample value of 1.0 maps to 215 in 16-bit audio, but the maximum
16-bit sample value is 215 −1! If your goal is to clip to the 16-bit range, you should set peak to the
ratio 32767.0/32768.0. For 24-bit audio, use (223 −1)/(223, etc.

s-abs(sound) [SAL]
(s-abs sound) [LISP]

A generalized absolute value function. If sound is a SOUND, compute the absolute value of each sample.
If sound is a number, just compute the absolute value. If sound is a multichannel sound, return a
multichannel sound with s-abs applied to each element. The result has the type, sample rate, starting
time, etc. of sound.

s-avg(sound, blocksize, stepsize, operation) [SAL]
(s-avg sound blocksize stepsize operation) [LISP]

Computes the averages or peak values of blocks of samples. Each output sample is an average or
peak of blocksize (a fixnum) adjacent samples from the input sound. After each average or peak is
taken, the input is advanced by stepsize, a fixnum which may be greater or less than blocksize. The
output sample rate is the sound (input) sample rate divided by stepsize. The duration of the output
is the same (approximately, due to rounding) as that of sound. Notice however, that the features of
the input will appear earlier in the output by half the window size. For example, a sharp peak in the
input will result in a smoothed peak (using OP-AVERAGE) one half blocksize earlier. You can correct
for this shift by inserting one half blocksize of silence before sound, e.g. if s has a sample rate of
44100 Hz, then snd-avg(seq(s-rest(0.01), cue(s)), 882, 441, OP-AVERAGE) will shift s
by 0.01 s to compensate for the shift introduced by a smoothing window of size 0.02 s (882/44100). If
sound is a multichannel sound, return a multichannel sound with s-avg applied to each element. This
function is useful for computing low-sample-rate rms or peak amplitude signals for input to snd-gate
or snd-follow. To select the operation, operation should be one of OP-AVERAGE or OP-PEAK. (These
are global lisp variables; the actual operation parameter is an integer.) For RMS computation, see rms
in Section 7.2.2.7.

v 3.24 100

Nyquist Reference Manual Chapter 7. Nyquist Functions

s-sqrt(sound) [SAL]
(s-sqrt sound) [LISP]

A generalized square root function. If sound is a SOUND, compute the square root of each sample. If
sound is a number, just compute the square root. If sound is a multichannel sound, return a multichannel
sound with s-sqrt applied to each element. The result has the type, sample rate, starting time, etc. of
sound. In taking square roots, if an input sample is less than zero, the corresponding output sample is
zero. This is done because the square root of a negative number is undefined.

s-exp(sound) [SAL]
(s-exp sound) [LISP]

A generalized exponential function. If sound is a SOUND, compute ex for each sample x. If sound is a
number x, just compute ex. If sound is a multichannel sound, return a multichannel sound with s-exp
applied to each element. The result has the type, sample rate, starting time, etc. of sound.

s-log(sound) [SAL]
(s-log sound) [LISP]

A generalized natural log function. If sound is a SOUND, compute ln(x) for each sample x. If sound is
a number x, just compute ln(x). If sound is a multichannel sound, return a multichannel sound with
s-log applied to each element. The result has the type, sample rate, starting time, etc. of sound. Note
that the ln of 0 is undefined (some implementations return negative infinity), so use this function with
care.

s-max(sound1, sound2) [SAL]
(s-max sound1 sound2) [LISP]

Compute the maximum of two functions, sound1 and sound2. This function also accepts numbers
and multichannel sounds and returns the corresponding data type. The start time of the result is the
maximum of the start times of sound1 and sound2. The logical stop time and physical stop time of the
result is the minimum of the logical stop and physical stop times respectively of sound1 and sound2.
Note, therefore, that the result value is zero except within the bounds of both input sounds.

s-min(sound1, sound2) [SAL]
(s-min sound1 sound2) [LISP]

Compute the minimum of two functions, sound1 and sound2. This function also accepts numbers
and multichannel sounds and returns the corresponding data type. The start time of the result is the
maximum of the start times of sound1 and sound2. The logical stop time and physical stop time of the
result is the minimum of the logical stop and physical stop times respectively of sound1 and sound2.
Note, therefore, that the result value is zero except within the bounds of both input sounds.

osc-note(pitch [, duration, env, loud, table]) [SAL]
(osc-note pitch [duration env loud table]) [LISP]

Same as osc, but osc-note multiplies the result by env. The env may be a sound, or a list supplying
(t1 t2 t4 l1 l2 l3). The result has a sample rate of *sound-srate*.

v 3.24 101

Nyquist Reference Manual Chapter 7. Nyquist Functions

quantize(sound, steps) [SAL]
(quantize sound steps) [LISP]

Quantizes sound as follows: sound is multiplied by steps and rounded to the nearest integer. The result
is then divided by steps. For example, if steps is 127, then a signal that ranges from -1 to +1 will be
quantized to 255 levels (127 less than zero, 127 greater than zero, and zero itself). This would match
the quantization Nyquist performs when writing a signal to an 8-bit audio file. The sound may be
multichannel.

ramp([duration]) [SAL]
(ramp [duration]) [LISP]

Returns a linear ramp from 0 to 1 over duration (default is 1). The function actually reaches 1 at dura-
tion, and therefore has one extra sample, making the total duration be duration + 1/*Control-srate*.
See Figure 7.3 for more detail. Ramp is unaffected by the sustain transformation. The effect of time
warping is to warp the starting and ending times only. The ramp itself is unwarped (linear). The sample
rate is *control-srate*.

rms(sound [, rate, window-size]) [SAL]
(rms sound [rate window-size]) [LISP]

Computes the RMS of sound using a square window of size window-size. The result has a sample rate
of rate. The default value of rate is 100 Hz, and the default window size is 1/rate seconds (converted to
samples). The sound is a SOUND or a multichannel sound (in which case the result is a multichannel
sound). The rate is a FLONUM and window-size is a FIXNUM.

recip(sound) [SAL]
(recip sound) [LISP]

A generalized reciprocal function. If sound is a SOUND, compute 1/x for each sample x. If sound is a
number x, just compute 1/x. If sound is a multichannel sound, return a multichannel sound with recip
applied to each element. The result has the type, sample rate, starting time, etc. of sound. Note that the
reciprocal of 0 is undefined (some implementations return infinity), so use this function with care on
sounds. Division of sounds is accomplished by multiplying by the reciprocal. Again, be careful not to
divide by zero.

s-rest([duration]) [SAL]
(s-rest [duration]) [LISP]

Create silence (zero samples) for the given duration at the sample rate *sound-srate*. Default
duration is 1.0 sec, and the sound is transformed in time according to *warp*. Note: rest is a Lisp
function that is equivalent to cdr. Be careful to use s-rest when you need a sound!

noise([duration]) [SAL]
(noise duration) [LISP]

Generate noise with the given duration. Duration (default is 1.0) is transformed according to *warp*.
The sample rate is *sound-srate* and the amplitude is +/- *loud*.

v 3.24 102

Nyquist Reference Manual Chapter 7. Nyquist Functions

Figure 7.3: Ramps generated by pwl and ramp functions. The pwl version ramps toward the breakpoint (1,
1), but in order to ramp back to zero at breakpoint (1, 0), the function never reaches an amplitude of 1. If used
at the beginning of a seq construct, the next sound will begin at time 1. The ramp version actually reaches
breakpoint (1, 1); notice that it is one sample longer than the pwl version. If used in a sequence, the next
sound after ramp would start at time 1 + P, where P is the sample period.

yin(sound, minstep, maxstep, stepsize) [SAL]
(yin sound minstep maxstep stepsize) [LISP]

Fundamental frequency estimation (pitch detection. Use the YIN algorithm to estimate the fundamental
frequency of sound, which must be a SOUND. The minstep, a FLONUM, is the minimum frequency
considered (in steps), maxstep, a FLONUM, is the maximum frequency considered (in steps), and stepsize,
a FIXNUM, is the desired hop size. The result is a “stereo” signal, i.e. an array of two SOUNDs, both
at the same sample rate, which is approximately the sample rate of sound divided by stepsize. The
first SOUND consists of frequency estimates (in units of steps, i.e. middle C = 60). The second sound
consists of values that measure the confidence or reliability of the frequency estimate. A small value
(less than 0.1) indicates fairly high confidence. A larger value indicates lower confidence. This number
can also be thought of as a ratio of non-periodic power to periodic power. When the number is low, it
means the signal is highly periodic at that point in time, so the period estimate will be reliable. Hint #1:
See Alain de Cheveigne and Hideki Kawahara’s article "YIN, a Fundamental Frequency Estimator for
Speech and Music" in the Journal of the Acoustic Society of America, April 2002 for details on the
yin algorithm. Hint #2: Typically, the stepsize should be at least the expected number of samples in
one period so that the fundamental frequency estimates are calculated at a rate far below the sample
rate of the signal. Frequency does not change rapidly and the yin algorithm is fairly slow. To optimize
speed, you may want to use less than 44.1 kHz sample rates for input sounds.Yin uses interpolation
to achieve potentially fractional-sample-accurate estimates, so higher sample rates do not necessarily
help the algorithm and definitely slow it down. The computation time is O(n2) per estimate, where n is
the number of samples in the longest period considered. Therefore, each increase of minstep by 12 (an

v 3.24 103

Nyquist Reference Manual Chapter 7. Nyquist Functions

octave) gives you a factor of 4 speedup, and each decrease of the sample rate of sound by a factor of
two gives you another factor of 4 speedup. Finally, the number of estimates is inversely proportional to
stepsize. Hint #3: Use snd-srate (see Section 7.1.3) to get the exact sample rate of the result, which
will be the sample rate of sound divided by stepsize. E.g. (snd-srate (aref yin-output 0)),
where yin-output is a result returned by yin, will be the sample rate of the estimates.

7.3 Transformations

These functions change the environment that is seen by other high-level functions. Note that these changes
are usually relative to the current environment. There are also “absolute” versions of each transformation
function, with the exception of seq, seqrep, sim, and simrep. The “absolute” versions (starting or ending
with “abs”) do not look at the current environment, but rather set an environment variable to a specific value.
In this way, sections of code can be insulated from external transformations.

abs-env(beh) [SAL]
(abs-env beh) [LISP]

Compute beh in the default environment. This is useful for computing waveform tables and sig-
nals that are “outside” of time. For example, (at 10.0 (abs-env (my-beh))) is equivalent to
(abs-env (my-beh)) because abs-env forces the default environment. Or in SAL, we would say
abs-env(my-beh()) @ 10 is equivalent to abs-env(my-beh()).

at(time, beh) [SAL]
(at time beh) [LISP]

Evaluate beh with *warp* shifted by time. In SAL, you can use the infix operator @ as in beh @ time .
To discover how the environment is shifting time, use local-to-global(time). Most commonly,
you call local-to-global(0) to find when a sound created in the current environment will start,
expressed in absolute (global) terms. This can be regarded as the “current time.”

at-abs(time, beh) [SAL]
(at-abs time beh) [LISP]

Evaluate beh with *warp* shifted so that local time 0 maps to time. In SAL, you can use the infix
operator @@ as in beh @@ time .

continuous-control-warp(beh) [SAL]
(continuous-control-warp beh) [LISP]

Applies the current warp environment to the signal returned by beh. The result has the default control
sample rate *control-srate*. Linear interpolation is currently used. Implementation: beh is first
evaluated without any shifting, stretching, or warping. The result is functionally composed with the
inverse of the environment’s warp function.

continuous-sound-warp(beh) [SAL]
(continuous-sound-warp beh) [LISP]

Applies the current warp environment to the signal returned by beh. The result has the default sound

v 3.24 104

Nyquist Reference Manual Chapter 7. Nyquist Functions

sample rate *sound-srate*. Linear interpolation is currently used. See continuous-control-warp
for implementation notes.

control-srate-abs(srate, beh) [SAL]
(control-srate-abs srate beh) [LISP]

Evaluate beh with *control-srate* set to sample rate srate. Note: there is no “relative” version of
this function.

extract(start, stop, beh) [SAL]
(extract start stop beh) [LISP]

Returns a sound which is the portion of beh between start and stop. Note that this is done relative to
the current *warp*. The result is shifted to start according to *warp*, so normally the result will start
without a delay of start.

extract-abs(start, stop, beh) [SAL]
(extract-abs start stop beh) [LISP]

Returns a sound which is the portion of beh between start and stop, independent of the current *warp*.
The result is shifted to start at time zero. Wrapping a call to extract-abs in cue will shift the result
to start at the current time, which is local-to-global(0).

loud(volume, beh) [SAL]
(loud volume beh) [LISP]

Evaluates beh with *loud* incremented by volume. (Recall that *loud* is in decibels, so increment is
the proper operation.)

loud-abs(volume, beh) [SAL]
(loud-abs volume beh) [LISP]

Evaluates beh with *loud* set to volume.

sound-srate-abs(srate, beh) [SAL]
(sound-srate-abs srate beh) [LISP]

Evaluate beh with *sound-srate* set to sample rate srate. Note: there is no “relative” version of this
function.

stretch(factor, beh) [SAL]
(stretch factor beh) [LISP]

Evaluates beh with *warp* scaled by factor. The effect is to “stretch” the result of beh (under the
current environment) by factor. See Chapter 4 for more information. Use get-duration(dur) to get
the nominal actual duration of a behavior that locally has a duration of dur. Here, “nominal” means what
would be expected if the behavior obeys the shift, stretch, and warp components of the environment.
(Any behavior is free to deviate from the nominal timing. For example, a percussion sound might
have a fixed duration independent of the stretch factor.) Also, “actual” means global or absolute time,
and “locally” means within the environment where get-duration is called. get-duration works by
mapping the current time (local time 0) using local-to-global to obtain an actual start time, and
mapping dur to obtain an actual end time. The difference is returned.

v 3.24 105

Nyquist Reference Manual Chapter 7. Nyquist Functions

stretch-abs(factor, beh) [SAL]
(stretch-abs factor beh) [LISP]

Evaluates beh with *warp* set to a linear time transformation where each unit of logical time maps to
factor units of real time. The effect is to stretch the nominal behavior of beh (under the default global
environment) by factor. See Chapter 4 for more information.

sustain(factor, beh) [SAL]
(sustain factor beh) [LISP]

Evaluates beh with *sustain* scaled by factor. The effect is to “stretch” the result of beh (under the
current environment) by factor; however, the logical stop times are not stretched. Therefore, the overall
duration of a sequence is not changed, and sounds will tend to overlap if *sustain* is greater than
one (legato) and be separated by silence if *sustain* is less than one.

sustain-abs(factor, beh) [SAL]
(sustain-abs factor beh) [LISP]

Evaluates beh with *sustain* set to factor. (See sustain, above.)

transpose(amount, beh) [SAL]
(transpose amount beh) [LISP]

Evaluates beh with *transpose* shifted by amount. The effect is relative transposition by amount
semitones.

transpose-abs(amount, beh) [SAL]
(transpose-abs amount beh) [LISP]

Evaluates beh with *transpose* set to amount. The effect is the transposition of the nominal pitches
in beh (under the default global environment) by amount.

warp(fn, beh) [SAL]
(warp fn beh) [LISP]

Evaluates beh with *warp* modified by fn. The idea is that beh and fn are written in the same time
system, and fn warps that time system to local time. The current environment already contains a
mapping from local time to global (real) time. The value of *warp* in effect when beh is evaluated is
the functional composition of the initial *warp* with fn.

warp-abs(fn, beh) [SAL]
(warp-abs fn beh) [LISP]

Evaluates beh with *warp* set to fn. In other words, the current *warp* is ignored and not composed
with fn to form the new *warp*.

7.4 Combination and Time Structure

These behaviors combine component behaviors into structures, including sequences (melodies), simultaneous
sounds (chords), and structures based on iteration. See also the trigger function, described in Section 9.1.4,
which uses a SOUND to trigger instances of a behavior.

v 3.24 106

Nyquist Reference Manual Chapter 7. Nyquist Functions

seq(beh1 [, beh2, ...]) [SAL]
(seq beh1 [beh2 ...]) [LISP]

Evaluates the first behavior beh1 according to the current time in the environment and each successive
behavior at the logical-stop time of the previous one. The results are summed to form a sound
whose logical-stop is the logical-stop of the last behavior in the sequence. Each behavior can
result in a multichannel sound, in which case, the logical stop time is considered to be the maximum
logical stop time of any channel. The number of channels in the result is the number of channels of the
first behavior. If other behaviors return fewer channels, new channels are created containing constant
zero signals until the required number of channels is obtained. If other behaviors return a simple
sound rather than multichannel sounds, the sound is automatically assigned to the first channel of a
multichannel sound that is then filled out with zero signals. If another behavior returns more channels
than the first behavior, the error is reported and the computation is stopped. Sample rates are converted
up or down to match the sample rate of the first sound in a sequence.

Nyquist programs should generally avoid storing sounds in global variables because that tends to cause
sound samples to be retained in memory. A related problem can occur with seq and seqrep. With
these functions, behaviors are not evaluated until needed, but what if the behaviors depend on local
variables as parameters? Ordinarily, the variables would be long gone and garbage collected by the time
the behavior is evaluated. So, seq and seqrep capture all local variables and their bindings (values) in
closures. This solves the problem of retaining local variables and values until they are needed by the
behaviors, but it has a problem similar to global variables in that any sounds captured in the closure
cannot be released until the last behavior in the sequence is evaluated.

Here is an example:
load "reverb"

function long-tone() return buzz(15, c4, lfo(5, 10))

function rev-with-tail(s, rt)
return reverb(seq(s, s-rest(rt * 2)), rt)

play rev-with-tail(pluck(c4), 10)
This SAL function uses seq to append rt * 2 seconds of silence to sound s before passing it to reverb
ensuring that the reverb tail will not be cut off immediately at the end of s. Behavior 2, s-rest(rt
* 2), is wrapped in a closure which also captures the binding of s to the input sound (returned from
long-tone()) and that of rt to 10. If there were no closure, then when rev-with-tail returns a
sound to play, the variable s would be freed by garbage collection, and the only remaining reference
to long-tone() would be internal to the reverb sound computation. reverb disposes of samples
as soon as they are computed and used, so the total memory requirements would be minimal. In this
case, however, since s is captured in a closure, as reverb demands computation of samples from
long-tone(), reverb releases its claim on the samples, but s does not, so all the samples are retained
in memory until s-rest(rt * 2) is evaluated and the closure (and s) are freed.

For 10 seconds of sound (such as long-tone()), this is not a big problem. In fact, if you use the

v 3.24 107

Nyquist Reference Manual Chapter 7. Nyquist Functions

default settings for autonorm, Nyquist will store about 20 seconds of sound in memory anyway just to
do some look-ahead for normalization, but if s represents an hour-long stereo recording, or if there are
many other sounds bound in local variables and captured in closures, the memory overhead can be too
great. The solution is to override the default scopes and bindings to achieve the variable lifetimes we
want. At any time, we can set a variable to nil, freeing the previous value to allow garbage collection.
In LISP, we can write (prog1 s (setf s nil)) to evaluate s, then free s by setting it to nil. The
original value of s is returned from the prog1 expression. In SAL, we can use the same trick, using
setf rather than the typical SAL assignment operator (=).

To change the example to be memory efficient, we change the definition of rev-with-tail to:
function rev-with-tail(s, rt)

return reverb(seq(prog1(s, setf(s, nil)), s-rest(rt * 2)), rt)
Note in this example that the variable s loses its reference to the long-tone() sound right after it
is evaluated by prog1, so now reverb has the only reference to this sound, and it can free samples
from long-tone() as they are consumed. (In case you are wondering, the actual mechanism is that
when reverb frees samples, their reference count goes to zero since no other reference exists to the
possibly shared list of samples. There is no other reference because the reference previously bound to
s is released by the garbage collector.)

It should be noted that the variable rt is retained in the closure and remains accessible there, so when
s terminates, s-rest(rt) will evaluate as expected, using the value that rt acquired way back when
rev-with-tail was called. This illustrates why the local variables must be saved in closures at the
time seq is called.

seqrep(var, limit, beh) [SAL]
(seqrep (var limit) beh) [LISP]

Iteratively evaluates beh with the atom var set with values from 0 to limit-1, inclusive. These sounds
are placed sequentially in time as if by seq. The symbol var is a read-only local variable to beh.
Assignments are not restricted or detected, but may cause a run-time error or crash. In LISP, the syntax
is (seqrep (var limit) beh).

sim([beh1, beh2, ...]) [SAL]
(sim [beh1 beh2 ...]) [LISP]

Returns a sound which is the sum of the given behaviors evaluated with the current value of *warp*.
If behaviors return multiple channel sounds, the corresponding channels are added. If the number of
channels does not match, the result has as many channels as the argument with the most channels.
For example, if a two-channel sound [L, R] is added to a four-channel sound [C1, C2, C3, C4], the
result is [L + C1, R + C2, C3, C4]. Arguments to sim may also be numbers. If all arguments are
numbers, sim is equivalent (although slower than) the LISP + function. If a number is added to a sound,
snd-offset is used to add the number to each sample of the sound. The result of adding a number to
two or more sounds with different durations is not defined. Use const to coerce a number to a sound
of a specified duration. An important limitation of sim is that it cannot handle hundreds of behaviors
due to a stack size limitation in XLISP. To compute hundreds of sounds (e.g. notes) at specified times,
see timed-seq, below. See also sum below. Notce that sim is not transitive due to coercion rules:
Using SAL syntax, sim(a, sim(b, c)) may not produce the same result as sim(sim(a, b), c).

v 3.24 108

Nyquist Reference Manual Chapter 7. Nyquist Functions

simrep(var, limit, beh) [SAL]
(simrep var limit beh) [LISP]

Iteratively evaluates beh with the atom var set with values from 0 to limit-1, inclusive. These sounds
are then placed simultaneously in time as if by sim. In LISP, the syntax is (seqrep (var limit)
beh).

set-logical-stop(beh, time) [SAL]
(set-logical-stop beh time) [LISP]

Returns a sound with time as the logical stop time.

sum(a [, b, ...])[SAL]
(sum a [b ...]) [LISP]

Returns the sum of a, b, ..., allowing mixed addition of sounds, multichannel sounds and numbers.
Identical to sim. In SAL, use the infix “+” operator. See sim just above for more detail.

mult(a [, b, ...]) [SAL]
(mult a [b ...]) [LISP]

Returns the product of a, b, ..., allowing mixed multiplication of sounds, multichannel sounds and
numbers.

diff(a, b) [SAL]
(diff a b) [LISP]

Returns the difference between a and b. This function is defined as (sum a (prod -1 b)).

timed-seq(score) [SAL]
(timed-seq score) [LISP]

Computes sounds from a note list or “score.” The score is of the form: ‘((time1 stretch1 beh1)
(time2 stretch2 beh2) ...), where timeN is the starting time, stretchN is the stretch factor, and
behN is the behavior. Note that score is normally a quoted list! The times must be in increasing
order, and each behN is evaluated using lisp’s eval, so the behN behaviors cannot refer to local
parameters or local variables. The advantage of this form over seq is that the behaviors are evaluated
one-at-a-time which can take much less stack space and overall memory. One special “behavior”
expression is interpreted directly by timed-seq: (SCORE-BEGIN-END) is ignored, not evaluated as
a function. Normally, this special behavior is placed at time 0 and has two parameters: the score
start time and the score end time. These are used in Xmusic functions. If the behavior has a :pitch
keyword parameter which is a list, the list represents a chord, and the expression is replaced by a set of
behaviors, one for each note in the chord. It follows that if :pitch is nil, the behavior represents a
rest and is ignored.

v 3.24 109

Nyquist Reference Manual Chapter 7. Nyquist Functions

7.5 Sound File Input and Output

play sound [SAL]
(play sound) [LISP]

Play the sound through the DAC. In XLISP, it is a function. In SAL, you can invoke play as either a
command or a function:

play pluck(c4)
;; or call the function #play like this:
exec #play(pluck(c4))

The play command or function writes a file and plays it. The sound is any expression that evaluates
to a SOUND. Typically, this should be function call, in which case the samples are computed
incrementally and not retained in main memory (an advantage for large sounds). If the expression
is a variable containing a SOUND (which may or may not be fully evaluated yet), the SOUND is
fully evaluated and all samples are retained in the variable. The play function is defined in the file
system.lsp. The variable *default-sf-dir* names a directory into which to save a sound file, and
default-sound-file names the file. If *default-sound-file* contains a slash (/), it is treated
as an absolute path or path relative to the current directory, ignoring *default-sf-dir*. Be careful
not to call play or sound-play within a function and then invoke that function from another play
command.

By default, Nyquist will try to normalize sounds using the method named by *autonorm-type*, which
is ’lookahead by default. The lookahead method precomputes and buffers *autonorm-max-samples*
samples, finds the peak value, and normalizes accordingly. The ’previous method bases the
normalization of the current sound on the peak value of the (entire) previous sound. This might be
good if you are working with long sounds that start rather softly. See Section 5.3 for more details.

If you want precise control over output levels, you should turn this feature off by typing (using SAL
syntax):

autonorm-off()

Reenable the automatic normalization feature by typing:

autonorm-on()

Play normally produces real-time output. The default is to send audio data to the DAC as it is computed
in addition to saving samples in a file. If computation is slower than real-time, output will be choppy,
but since the samples end up in a file, you can type (r) to replay the stored sound. Real-time playback
can be disabled by (using SAL syntax):

sound-off()

and reenabled by:

sound-on()

Disabling real-time playback has no effect on (play-file) or (r).

v 3.24 110

Nyquist Reference Manual Chapter 7. Nyquist Functions

While sounds are playing, typing control-A to Nyquist (or clicking the Mark button in the NyquistIDE)
will push the estimated elapsed audio time onto the head of the list stored in *audio-markers*.
Because samples are computed in blocks and because there is latency between sample computation
and sample playback, the elapsed time may not be too accurate, and the computed elapsed time may
not advance after all samples have been computed but the sound is still playing.

play-file(filename) [SAL]
(play-file filename) [LISP]

Play the contents of a sound file named by filename. The s-read function is used to read the file, and
unless filename specifies an absolute path or starts with “.”, it will be read from *default-sf-dir*.

autonorm-on() [SAL]
(autonorm-on) [LISP]

Enable automatic adjustment of a scale factor applied to sounds computed using the play command.

autonorm-off() [SAL]
(autonorm-off) [LISP]

Disable automatic adjustment of a scale factor applied to sounds computed using the play command.

sound-on() [SAL]
(sound-on) [LISP]

Enable real-time audio output when sound is computed by the the play command.

sound-off() [SAL]
(sound-off) [LISP]

Disable real-time audio output when sound is computed by the the play command.

s-save(expression, [maxlen, filename, progress], format: format, mode: mode,
bits: bits, swap: flag, play: play) [SAL]

(s-save expression [maxlen filename progress] :format format :mode mode
:bits bits :swap flag :play play) [LISP]

Evaluates the expression, which should result in a sound or an array of sounds, and writes the result
to the given filename. (If omitted, *default-sound-file* is used instead.) A FLONUM is returned
giving the maximum absolute value of all samples written. (This is useful for normalizing sounds and
detecting sample overflow.) If play is not NIL, the sound will be output through the computer’s audio
output system. (play: [SAL] or :play [LISP] is not implemented on all systems; if it is implemented,
and filename is NIL, then this will play the file without also writing a file.) The latency (length of audio
buffering) used to play the sound is 0.3s by default, but see snd-set-latency. If a multichannel
sound (array) is written, the channels are up-sampled to the highest rate in any channel so that all
channels have the same sample rate. The maximum number of samples written per channel is optionally
given by maxlen, which allows writing the initial part of a very long or infinite sound. Progress is
indicated by printing the sample count after writing each 10 seconds of frames. If progress is specified
and greater than 10,000, progress is printed at this specified frame count increment. A header is written
according to format, samples are encoded according to mode, using bits bits/sample, and bytes are
swapped if flag is not NIL. Defaults for these are *default-sf-format*, *default-sf-mode*, and

v 3.24 111

Nyquist Reference Manual Chapter 7. Nyquist Functions

default-sf-bits. The default for flag is NIL. The bits parameter may be 8, 16, or 32. The values
for the format and mode options are described below:

Format

snd-head-none
The format is unknown and should be determined by reading the file.

snd-head-raw
A raw format file has no header.

snd-head-AIFF
AIFF format header.

snd-head-IRCAM
IRCAM format header.

snd-head-NeXT
1024-byte NeXT/SUN format header followed by IRCAM header ala CMIX. Note that the NeXT/SUN
format has a header-length field, so it really is legal to have a large header, even though the normal
minimal header is only 24 bytes. The additional space leaves room for maximum amplitudes, which
can be used for normalizing floating-point soundfiles, and for other data. Nyquist follows the CMIX
convention of placing an IRCAM format header immediately after the NeXT-style header.

snd-head-Wave
Microsoft Wave format header.

snd-head-WaveX
Microsoft Wave with WAVEFORMATEX format header.

snd-head-flac
FLAC lossless compressed audio.

snd-head-ogg
OGG-VORBIS compressed audio.

snd-head-*
See sndfnint.lsp in the nyquist/runtime directory for more formats. The current list includes paf,
svx, nist, voc, w64, mat4, mat5, pvf, xi, htk, sds, avr, sd2, and caf.

Mode

v 3.24 112

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-mode-adpcm
ADPCM mode (not supported).

snd-mode-pcm
signed binary PCM mode.

snd-mode-ulaw
8-bit U-Law mode.

snd-mode-alaw
8-bit A-Law mode (not supported).

snd-mode-float
32-bit floating point mode.

snd-mode-upcm
unsigned binary PCM mode.

snd-mode-*
See sndfnint.lsp in the nyquist/runtime for more modes. The current list includes double, gsm610,
dwvw, dpcm, and msadpcm.

The defaults for format, mode, and bits are as follows:

NeXT and Sun machines:
snd-head-NeXT, snd-mode-pcm, 16

SGI and Macintosh machines:
snd-head-AIFF, snd-mode-pcm, 16

s-read(filename, time-offset: offset, srate: sr, dur: dur, nchans: chans,
format: format, mode: mode, bits: n, swap: flag) [SAL]

(s-read filename :time-offset offset :srate sr :dur dur :nchans chans
:format format :mode mode :bits n :swap flag) [LISP]

Reads a sound from filename. The global *default-sf-dir* applies. If a header is detected, the
header is used to determine the format of the file, and header information overrides format information
provided by keywords (except for time-offset: and dur:).

s-read("mysound.snd", srate: 44100)

specifies a sample rate of 44100 hz, but if the file has a header specifying 22050 hz, the resulting
sample rate will be 22050. The parameters are:

• offset – the amount of time (in seconds) to skip from the beginning of the file. The default is 0.0.

• sr – the sample rate of the samples in the file. Default is *default-sf-srate* , which is
normally 44100.

v 3.24 113

Nyquist Reference Manual Chapter 7. Nyquist Functions

• dur – the maximum duration in seconds to read. Default is 10000.

• chans – the number of channels to read. It is assumed that samples from each channel are
interleaved. Default is 1.

• format – the header format. See s-save for details. Default is *default-sf-format*, although
this parameter is currently ignored.

• mode – the sample representation, e.g. PCM or float. See s-save for details. Default is
default-sf-format.

• n – the number of bits per sample. See s-save for details. Default is *default-sf-bits*.

• flag – (T or NIL) swap byte order of each sample. Default is NIL.

If there is an error, for example if offset is greater than the length of the file, then NIL is returned rather
than a sound. Information about the sound is also returned by s-read through *rslt*2. The list
assigned to *rslt* is of the form: (format channels mode bits swap samplerate duration flags), which
are defined as follows:

• format – the header format. See s-save for details. Access this element of *rslt* by calling
snd-read-format(*rslt*).

• channels – the number of channels. Access this element of *rslt* by calling snd-read-channels(*rslt*).

• mode – the sample representation, e.g. PCM or float. Access this element of *rslt* by calling
snd-read-mode(*rslt*). See s-save for details.

• bits – the number of bits per sample. Access this element of *rslt* by calling
snd-read-bits(*rslt*).

• swap – 1 if byte-swapping is needed, 0 otherwise. Access this element of *rslt* by calling
snd-read-swap(*rslt*).

• samplerate – the sample rate, expressed as a FLONUM. Access this element of *rslt* by calling
snd-read-srate(*rslt*).

• duration – the duration of the sound, in seconds. Access this element of *rslt* by calling
snd-read-dur(*rslt*).

• flags – The values for format, channels, mode, bits, samplerate, and duration are initially just the
values passed in as parameters or default values to s-read. If a value is actually read from the
sound file header, a flag is set. The flags are: snd-head-type (format), snd-head-channels,
snd-head-mode, snd-head-bits, snd-head-srate, and snd-head-dur. For example,

(let ((flags (s-read-flags *rslt*)))
(not (zerop (logand flags snd-head-srate))))

tells whether the sample rate was specified in the file. See also sf-info below. Access this
element of *rslt* by calling snd-read-flags(*rslt*).

2Since XLISP does not support multiple value returns, multiple value returns are simulated by having the function assign
additional return values in a list to the global variable *rslt*. Since this is a global, it should be inspected or copied immediately
after the function return to insure that return values are not overwritten by another function.

v 3.24 114

Nyquist Reference Manual Chapter 7. Nyquist Functions

s-add-to(expression, maxlen, filename [, offset, progress]) [SAL]
(s-add-to expression maxlen filename [offset progress]) [LISP]

Evaluates the expression, which should result in a sound or an array of sounds, and adds the result to the
given filename. The global *default-sf-dir* applies. A FLONUM is returned, giving the maximum
absolute value of all samples written. The sample rate(s) of expression must match those of the file.
The maximum number of samples written per channel is given by maxlen, which allows writing the
initial part of a very long or infinite sound. If offset is specified, the new sound is added to the file
beginning at an offset from the beginning (in seconds). Progress is indicated by printing the sample
count after writing each 10 seconds of frames. If progress is specified and greater than 10,000, progress
is printed at this specified frame count increment. The file is extended if necessary to accommodate the
new addition, but if offset falls outside of the original file, the file is not modified. (If necessary, use
s-add-to to extend the file with zeros.) The file must be a recognized sound file with a header (not a
raw sound file).

s-overwrite(expression, maxlen, filename [, offset, progress]) [SAL]
(s-overwrite expression maxlen filename [offset progress]) [LISP]

Evaluates the expression, which should result in a sound or an array of sounds, and replaces samples
in the given filename. The global *default-sf-dir* applies. A FLONUM is returned, giving the
maximum absolute value of all samples written. The sample rate(s) of expression must match those
of the file. The maximum number of samples written per channel is given by maxlen, which allows
writing the initial part of a very long or infinite sound. If offset is specified, the new sound is written
to the file beginning at an offset from the beginning (in seconds). The file is extended if necessary to
accommodate the new insert, but if offset falls outside of the original file, the file is not modified. (If
necessary, use s-add-to to extend the file with zeros.) Progress is indicated by printing the sample
count after writing each 10 seconds of frames. If progress is specified and greater than 10,000, progress
is printed at this specified frame count increment. The file must be a recognized sound file with a
header (not a raw sound file).

sf-info(filename) [SAL]
(sf-info filename) [LISP]

Prints information about a sound file. The parameter filename is a string. The file is assumed to be in
default-sf-dir (see soundfilename below) unless the filename begins with “.” or “/”. The source for
this function is in the runtime and provides an example of how to determine sound file parameters.

soundfilename(name) [SAL]
(soundfilename name) [LISP]

Converts a string name to a soundfile name. If name begins with “.” or “/”, the name is returned without
alteration. Otherwise, a path taken from *default-sf-dir* is prepended to name. The s-plot,
s-read, and s-save functions all use soundfilename to translate filenames.

s-plot(sound [, dur, n]) [SAL]
(s-plot sound [dur n]) [LISP]

Plots sound in a window. This function was designed to run a plot program on a Unix workstation,
but now is primarily used with NyquistIDE, which has self-contained plotting. Normally, time/value
pairs in ascii are written to points.dat and system-dependent code (or the NyquistIDE program)

v 3.24 115

Nyquist Reference Manual Chapter 7. Nyquist Functions

takes it from there. If the sound is longer than the optional dur (default is 2 seconds), only the first dur
seconds are plotted. If there are more than n samples to be plotted, the signal is interpolated to have n
samples before plotting. The data file used is *default-plot-file*:

default-plot-file
The file containing the data points, defaults to "points.dat".

spec-plot(sound [, offset: offset, dur: dur, res: res, bw: bw, db: db]) [SAL]
(spec-plot sound [:offset offset :dur dur :res res :bw bw :db db]) [LISP]

Computes and plots the short-time magnitude spectrum of sound (a SOUND or STRING). If sound
is a filename (a STRING), a sound is read from the file. The bandwidth of each bin is given by the
res (resolution) keyword parameter, which defaults to *spec-plot-res*. Since one is often
interested in lower frequencies, the bw (bandwidth keyword parameter limits the range
of bins which are plotted, and defaults to *spec-plot-bw*. The output can be presented on a dB
scale by setting the db keyword parameter to t (true). The default is to use a linear scale. The offset
(in seconds) skips initial samples before taking a frame of samples from sound. The dur keyword
parameter (in seconds) limits the number of samples taken from sound. If dur is shorter than the FFT
window size, the sound is zero-padded. If dur is longer than the FFT window size, the extra samples
are ignored. The magnitude spectrum is sent to s-plot as a signal. The sample rate of the signal is set
so that the plot labels on the horizontal axis represent Hz (not bin numbers.) To align bins with grid
lines, one normally specifies res values in round numbers, e.g. 10 or 20. To achieve an arbitrary bin
size, spec-plot resamples sound to a carefully computed sample rate that, after a power-of-2-sized
FFT, yields the desired bin size.

spec-print(file sound [, offset: offset, dur: dur, res: res, bw: bw, threshold:
threshold]) [SAL]
(spec-print file sound [:offset offset :dur dur :res res :bw bw :threshold
threshold]) [LISP]

Computes and prints an ASCII plot of the short-time magnitude spectrum of sound using sa-print
(see 10.1). The file can be T to print to the console or a file open for writing. Other parameters are
as in spec-plot (see above) except for threshold, which is passed to sa-print. Note that bw is
passed to sa-print as cutoff. The global variables *spec-plot-res* and *spec-plot-bw* apply
to spec-print as well as spec-plot. Important: The printed and plotted magnitudes are normalized
to a peak value of 1 (see sa-normalize).

spec-plot-res
The default bin resolution (separation in Hz between adjacent bins) for spec-plot. Defaults to 20 Hz.
You can override this by using a keyword parameter when you call spec-plot or spec-print, or for
convenience, you can change this variable which will affect all future calls to spec-plot where the
keyword parameter is omitted.

v 3.24 116

Nyquist Reference Manual Chapter 7. Nyquist Functions

spec-plot-bw
The default highest frequency to include in spec-plot. Defaults to 8000 Hz. You can override this by
using a keyword parameter when you call spec-plot or spec-print, or for convenience, you can
change this variable which will affect all future calls to spec-plot where the keyword parameter is
omitted.

spec-plot-db
The default output from spec-plot displays magnitude on a linear scale, but there is an option to
display on a dB scale. You can change the default behavior by setting this variable to t (true), or you
can override the default in any call to spec-plot using a keyword parameter.

s-print-tree(sound) [SAL]
(s-print-tree sound) [LISP]

Prints an ascii representation of the internal data structures representing a sound. This is useful for
debugging Nyquist. Identical to snd-print-tree.

7.6 Low-level Functions

Nyquist includes many low-level functions that are used to implement the functions and behaviors described
in previous sections. For completeness, these functions are described here. Remember that these are low-level
functions that are not intended for normal use. Unless you are trying to understand the inner workings of
Nyquist, you can skip this section.

7.6.1 Creating Sounds

The basic operations that create sounds are described here.

snd-const(value, t0, srate, duration) [SAL]
(snd-const value t0 srate duration) [LISP]

Returns a sound with constant value, starting at t0 with the given duration, at the sample rate srate.
You might want to use pwl (see Section 7.2.2.2) instead.

snd-read(filename, offset, t0, format, channels, mode, bits, swap, sr, dur) [SAL]
(snd-read filename offset t0 format channels mode bits swap sr dur) [LISP]

Loads a sound from a file with name filename. Files are assumed to consist of a header followed by
frames consisting of one sample from each channel. The format specifies the type of header, but this
information is currently ignored. Nyquist looks for a number of header formats and automatically
figures out which format to read. If a header can be identified, the header is first read from the file.
Then, the file pointer is advanced by the indicated offset (in seconds). If there is an unrecognized
header, Nyquist will assume the file has no header. If the header size is a multiple of the frame size
(bytes/sample * number-of-channels), you can use offset to skip over the header. To skip N bytes, use
an offset of:

v 3.24 117

Nyquist Reference Manual Chapter 7. Nyquist Functions

(/ (float N) sr (/ bits 8) channels)

If the header is not a multiple of the frame size, either write a header or contact the author (dannen-
berg@cs.cmu.edu) for assistance. Nyquist will round offset to the nearest sample. The resulting sound
will start at time t0. If a header is found, the file will be interpreted according to the header information.
If no header was found, channels tells how many channels there are, the samples are encoded according
to mode, the sample length is bits, and sr is the sample rate. The swap flag is 0 or 1, where 1 means to
swap sample bytes. The duration to be read (in seconds) is given by dur. If dur is longer than the data
in the file, then a shorter duration will be returned. If the file contains one channel, a sound is returned.
If the file contains 2 or more channels, an array of sounds is returned. Note: you probably want to call
s-read (see Section 7.5) instead of snd-read. Also, see Section 7.5 for information on the mode and
format parameters.

snd-save(expression, maxlen, filename, format, mode, bits, swap, play, progress)
[SAL]
(snd-save expression maxlen filename format mode bits swap play progress) [LISP]

Evaluates the expression, which should result in a sound or an array of sounds, and writes the result
to the given filename. If a multichannel sound (array) is written, the channels are up-sampled to the
highest rate in any channel so that all channels have the same sample rate. The maximum number of
samples written per channel is given by maxlen, which allows writing the initial part of a very long
or infinite sound. A header is written according to format, samples are encoded according to mode,
using bits bits/sample, and swapping bytes if swap is 1 (otherwise it should be 0). If play is not null,
the audio is played in real time (to the extent possible) as it is computed. Progress is indicated by
printing the sample count after writing each 10 seconds of frames. If progress is specified and greater
than 10,000, progress is printed at this specified frame count increment. The peak value of the sound
is returned. In addition, the symbol *RSLT* is bound to a list containing the sample rate, number of
channels, and duration (in that order) of the saved sound. Note: you probably want to call s-save (see
Section 7.5) instead. The format and mode parameters are described in Section 7.5.

snd-overwrite(expression, maxlen, filename, offset, progress) [SAL]
(snd-overwrite expression maxlen filename offset progress) [LISP]

Evaluates the expression, which should result in a sound or an array of sounds, and replaces samples
in the given filename, writing the first frame at a time of offset seconds. The offset must be less than
or equal to the duration of the existing file. Progress is indicated by printing the sample count after
writing each 10 seconds of frames. If progress is specified and greater than 10,000, progress is printed
at this specified frame count increment. The duration of the written samples may be greater than that
of the file, in which case the file is extended as necessary. The sample rate(s) of expression and the
number of channels must match those of the file. Up to a maximum of maxlen samples will be written
per channel. The peak value of the sound is returned. In addition, the symbol *RSLT* is bound to a list
containing the duration of the written sound (which may not be the duration of the sound file). Use
s-add-to (in Section 7.5 or s-overwrite (in Section 7.5 instead of this function.

v 3.24 118

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-coterm(s1, s2) [SAL]
(snd-coterm s1 s2) [LISP]

Returns a copy of s1, except the start time is the maximum of the start times of s1 and s2, and the
termination time is the minimum of s1 and s2. (After the termination time, the sound is zero as if s1 is
gated by s2.) Some rationale follows: In order to implement s-add-to, we need to read from the target
sound file, add the sounds to a new sound, and overwrite the result back into the file. We only want to
write as many samples into the file as there are samples in the new sound. However, if we are adding
in samples read from the file, the result of a snd-add in Nyquist will have the maximum duration of
either sound. Therefore, we may read to the end of the file. What we need is a way to truncate the read,
but we cannot easily do that, because we do not know in advance how long the new sound will be. The
solution is to use snd-coterm, which will allow us to truncate the sound that is read from the file (s1)
according to the duration of the new sound (s2). When this truncated sound is added to the new sound,
the result will have only the duration of the new sound, and this can be used to overwrite the file. This
function is used in the implementation of s-add-to, which is defined in runtime/fileio.lsp.

(snd-from-array ...) [SAL]
(snd-from-array ...) [LISP]

See page 68.

snd-white(t0, sr, d) [SAL]
(snd-white t0 sr d) [LISP]

Generate white noise, starting at t0, with sample rate sr, and duration d. You probably want to use
noise (see Section 7.2.2.7).

snd-zero(t0, srate) [SAL]
(snd-zero t0 srate) [LISP]

Creates a sound that is zero everywhere, starts at t0, and has sample rate srate. The logical stop time is
immediate, i.e. also at t0. You probably want to use pwl (see Section 7.2.2.2) instead.

7.6.2 Signal Operations

This next set of functions take sounds as arguments, operate on them, and return a sound.

snd-abs(sound) [SAL]
(snd-abs sound) [LISP]

Computes a new sound where each sample is the absolute value of the corresponding sample in sound.
You should probably use s-abs instead. (See Section 7.2.2.7.)

snd-sqrt(sound) [SAL]
(snd-sqrt sound) [LISP]

Computes a new sound where each sample is the square root of the corresponding sample in sound. If
a sample is negative, it is taken to be zero to avoid raising a floating point error. You should probably
use s-sqrt instead. (See Section 7.2.2.7.)

v 3.24 119

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-add(sound1, sound) [SAL]
(snd-add sound1 sound) [LISP]

Adds two sounds. The resulting start time is the minimum of the two parameter start times, the logical
stop time is the maximum of the two parameter stop times, and the sample rate is the maximum of the
two parameter sample rates. Use sim or sum instead of snd-add (see Section 7.4).

snd-offset(sound, offset) [SAL]
(snd-offset sound offset) [LISP]

Add an offset to a sound. The resulting start time, logical stop time, stop time, and sample rate are
those of sound. Use sum instead (see Section 7.4).

snd-avg(sound, blocksize, stepsize, operation) [SAL]
(snd-avg sound blocksize stepsize operation) [LISP]

Use s-avg instead (see Section 7.2.2.7). The s-avg function extends snd-avg to multichannel input
sounds.

snd-clip(sound, peak) [SAL]
(snd-clip sound peak) [LISP]

Hard limit sound to the given peak, a positive number. The samples of sound are constrained between
an upper value of peak and a lower value of -peak. Use clip instead (see Section 7.2.2.7).

snd-compose(f, g) [SAL]
(snd-compose f g) [LISP]

Compose two signals, i.e. compute f (g(t)), where f and g are sounds. This function is used primarily
to implement time warping, but it can be used in other applications such as frequency modulation. For
each sample x in g, snd-compose looks up the value of f (x) using linear interpolation. The resulting
sample rate, start time, etc. are taken from g. The sound f is used in effect as a lookup table, but it is
assumed that g is non-decreasing, so that f is accessed in time order. This allows samples of f to be
computed and discarded incrementally. If in fact g decreases, the current sample of g is replaced by the
previous one, forcing g into compliance with the non-decreasing restriction. See also sref, shape,
and snd-resample.

For an extended example that uses snd-compose for variable pitch shifting, see
nyquist/demos/pitch_change.htm.

snd-tapv(sound, offset, vardelay, maxdelay) [SAL]
(snd-tapv sound offset vardelay maxdelay) [LISP]

A variable delay: sound is delayed by the sum of offset (a FIXNUM or FLONUM) and vardelay (a SOUND).
The specified delay is adjusted to lie in the range of zero to maxdelay seconds to yield the actual delay,
and the delay is implemented using linear interpolation. This function was designed specifically for
use in a chorus effect: the offset is set to half of maxdelay, and the vardelay input is a slow sinusoid.
The maximum delay is limited to maxdelay, which determines the length of a fixed-sized buffer. The
function tapv is equivalent and preferred (see Section 7.2.2.3).

v 3.24 120

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-tapf(sound, offset, vardelay, maxdelay) [SAL]
(snd-tapf sound offset vardelay maxdelay) [LISP]

A variable delay like snd-tapv except there is no linear interpolation. By eliminating interpolation,
the output is an exact copy of the input with no filtering or distortion. On the other hand, delays jump
by samples causing samples to double or skip even when the delay is changed smoothly.

snd-copy(sound) [SAL]
(snd-copy sound) [LISP]

Makes a copy of sound. Since operators always make (logical) copies of their sound parameters, this
function should never be needed. This function is here for debugging.

snd-down(srate, sound) [SAL]
(snd-down srate sound) [LISP]

Linear interpolation of samples down to the given sample rate srate, which must be lower than the
sample rate of sound. Do not call this function. Nyquist performs sample-rate conversion automatically
as needed. If you want to force a conversion, call force-srate (see Section 7.2.2).

snd-exp(sound) [SAL]
(snd-exp sound) [LISP]

Compute the exponential of each sample of sound. Use s-exp instead (see Section 7.2.2.7).

snd-follow(sound, floor, risetime, falltime, lookahead) [SAL]
(snd-follow sound floor risetime falltime lookahead) [LISP]

An envelope follower. The basic goal of this function is to generate a smooth signal that rides on the
peaks of the input signal. The usual objective is to produce an amplitude envelope given a low-sample
rate (control rate) signal representing local RMS measurements. The first argument is the input signal.
The floor is the minimum output value. The risetime is the time (in seconds) it takes for the output to
rise (exponentially) from floor to unity (1.0) and the falltime is the time it takes for the output to fall
(exponentially) from unity to floor. The algorithm looks ahead for peaks and will begin to increase the
output signal according to risetime in anticipation of a peak. The amount of anticipation (in samples)
is given by lookahead. The algorithm is as follows: the output value is allowed to increase according
to risetime or decrease according to falltime. If the next input sample is in this range, that sample is
simply output as the next output sample. If the next input sample is too large, the algorithm goes back
in time as far as necessary to compute an envelope that rises according to risetime to meet the new
value. The algorithm will only work backward as far as lookahead. If that is not far enough, then there
is a final forward pass computing a rising signal from the earliest output sample. In this case, the output
signal will be at least momentarily less than the input signal and will continue to rise exponentially
until it intersects the input signal. If the input signal falls faster than indicated by falltime, the output
fall rate will be limited by falltime, and the fall in output will stop when the output reaches floor. This
algorithm can make two passes througth the buffer on sharply rising inputs, so it is not particularly fast.
With short buffers and low sample rates this should not matter. See snd-avg above for a function that
can help to generate a low-sample-rate input for snd-follow. See snd-chase in Section 7.6.3 for a
related filter.

v 3.24 121

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-gate(sound, lookahead, risetime, falltime, floor, threshold) [SAL]
(snd-gate sound lookahead risetime falltime floor threshold) [LISP]

This function generates an exponential rise and decay intended for noise gate implementation. The
decay starts when the signal drops below threshold and stays there for longer than lookahead. Decay
continues until the value reaches floor, at which point the decay stops and the output value is held
constant. Either during the decay or after the floor is reached, if the signal goes above threshold,
then the output value will rise to unity (1.0) at the point the signal crosses the threshold. Again,
look-ahead is used, so the rise actually starts before the signal crosses the threshold. The rise is a
constant-rate exponential and set so that a rise from floor to unity occurs in risetime. Similarly, the fall
is a constant-rate exponential such that a fall from unity to floor takes falltime. The result is delayed
by lookahead, so the output is not actually synchronized with the input. To compensate, you should
drop the initial lookahead of samples. Thus, snd-gate is not recommended for direct use. Use gate
instead (see Section 7.1.4).

snd-inverse(signal, start, srate) [SAL]
(snd-inverse signal start srate) [LISP]

Compute the function inverse of signal, that is, compute g(t) such that signal(g(t)) = t. This function
assumes that signal is non-decreasing, it uses linear interpolation, the resulting sample rate is srate,
and the result is shifted to have a starting time of start. If signal decreases, the true inverse may be
undefined, so we define snd-inverse operationally as follows: for each output time point t, scan
ahead in signal until the value of signal exceeds t. Interpolate to find an exact time point x from signal
and output x at time t. This function is intended for internal system use in implementing time warps.

snd-log(sound) [SAL]
(snd-log sound) [LISP]

Compute the natural logorithm of each sample of sound. Use s-log instead (see Section 7.2.2.7).

peak(expression, maxlen) [SAL]
(peak expression maxlen) [LISP]

Compute the maximum absolute value of the amplitude of a sound. The sound is created by evaluating
expression (as in s-save). Only the first maxlen samples are evaluated. The expression is automatically
quoted (peak is a macro), so do not quote this parameter. If expression is a variable, then the global
binding of that variable will be used. Also, since the variable retains a reference to the sound, the sound
will be evaluated and left in memory. See Section 5.3 on page 43 for examples.

snd-max(expression, maxlen) [SAL]
(snd-max expression maxlen) [LISP]

Compute the maximum absolute value of the amplitude of a sound. The sound is created by evaluating
expression (as in snd-save), which is therefore normally quoted by the caller. At most maxlen
samples are computed. The result is the maximum of the absolute values of the samples. Notes: It is
recommended to use peak (see above) instead. If you want to find the maximum of a sound bound to a
local variable and it is acceptable to save the samples in memory, then this is probably the function to
call. Otherwise, use peak.

v 3.24 122

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-maxv(sound1, sound2) [SAL]
(snd-maxv sound1 sound2) [LISP]

Compute the maximum of sound1 and sound2 on a sample-by-sample basis. The resulting sound has
its start time at the maximum of the input start times and a logical stop at the minimum logical stop
of the inputs. The physical stop time is the minimum of the physical stop times of the two sounds.
Note that this violates the “normal” interpretation that sounds are zero outside their start and stop
times. For example, even if sound1 extends beyond sound2 and is greater than zero, the result value in
this extension will be zero because it will be after the physical stop time, whereas if we simply treated
sound2 as zero in this region and took the maximum, we would get a non-zero result. Use s-max
instead (see Section 7.2.2.7).

snd-normalize(sound) [SAL]
(snd-normalize sound) [LISP]

Internally, sounds are stored with a scale factor that applies to all samples of the sound. All operators
that take sound arguments take this scale factor into account (although it is not always necessary to
perform an actual multiply per sample), so you should never need to call this function. This function
multiplies each sample of a sound by its scale factor, returning a sound that represents the same signal,
but whose scale factor is 1.0.

snd-oneshot(sound, threshold, ontime) [SAL]
(snd-oneshot sound threshold ontime) [LISP]

Computes a new sound that is zero except where sound exceeds threshold. From these points, the result
is 1.0 until sound remains below threshold for ontime (in seconds). The result has the same sample
rate, start time, logical stop time, and duration as sound.

snd-prod(sound1, sound2) [SAL]
(snd-prod sound1 sound2) [LISP]

Computes the product of sound1 and sound2. The resulting sound has its start time at the maximum
of the input start times and a logical stop at the minimum logical stop of the inputs. Do not use this
function. Use mult or prod instead (see Section 7.2.2). Sample rate, start time, etc. are taken from
sound.

snd-pwl(t0, sr, lis) [SAL]
(snd-pwl t0 sr lis) [LISP]

Computes a piece-wise linear function according to the breakpoints in lis. The starting time is t0,
and the sample rate is sr. The breakpoints are passed in an XLISP list (of type LVAL) where the list
alternates sample numbers (FIXNUMs, computed in samples from the beginning of the pwl function)
and values (the value of the pwl function, given as a FLONUM). There is an implicit starting point of (0,
0). The list must contain an odd number of points, the omitted last value being implicitly zero (0). The
list is assumed to be well-formed. Do not call this function. Use pwl instead (see Section 7.2.2.2).

v 3.24 123

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-quantize(sound, steps) [SAL]
(snd-quantize sound steps) [LISP]

Quantizes a sound. See Section 7.2.2.7 for details.

snd-recip(sound) [SAL]
(snd-recip sound) [LISP]

Compute the reciprocal of each sample of sound. Use recip instead (see Section 7.2.2.7).

snd-resample(f, rate) [SAL]
(snd-resample f rate) [LISP]

Resample sound f using high-quality interpolation, yielding a new sound with the specified rate. The
result is scaled by 0.95 because often, in resampling, interpolated values exceed the original sample
values, and this could lead to clipping. The resulting start time, etc. are taken from f. Use resample
instead.

snd-resamplev(f, rate, g) [SAL]
(snd-resamplev f rate g) [LISP]

Compose two signals, i.e. compute f (g(t)), where f and g are sounds. The result has sample rate given
by rate. At each time t (according to the rate), g is linearly interpolated to yield an increasing sequence
of high-precision score-time values. f is then interpolated at each value to yield a result sample. If in
fact g decreases, the current sample of g is replaced by the previous one, forcing g into compliance with
the non-decreasing restriction. The result is scaled by 0.95 because often, in resampling, interpolated
values exceed the original sample values, and this could lead to clipping. Note that if g has a high
sample rate, this may introduce unwanted jitter into sample times. See sound-warp for a detailed
discussion. See snd-compose for a fast, low-quality alternative to this function. Normally, you should
use sound-warp instead of this function.

snd-scale(scale, sound) [SAL]
(snd-scale scale sound) [LISP]

Scales the amplitude of sound by the factor scale. Use scale instead (see Section 7.2.2).

snd-shape(signal, table, origin) [SAL]
(snd-shape signal table origin) [LISP]

A waveshaping function. This is the primitive upon which shape is based. The snd-shape function
is like shape except that signal and table must be (single-channel) sounds. Use shape instead (see
Section 7.2.2.3).

snd-up(srate, sound) [SAL]
(snd-up srate sound) [LISP]

Increases sample rate by linear interpolation. The sound is the signal to be up-sampled, and srate is the
output sample rate. Do not call this function. Nyquist performs sample-rate conversion automatically
as needed. If you want to force a conversion, call force-srate (see Section 7.2.2).

v 3.24 124

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-xform(sound, sr, time, start, stop, scale) [SAL]
(snd-xform sound sr time start stop scale) [LISP]

Makes a copy of sound and then alters it in the following order: (1) the start time (snd-t0) of the
sound is shifted to time, (2) the sound is stretched as a result of setting the sample rate to sr (the start
time is unchanged by this), (3) the sound is clipped from start to stop, (4) if start is greater than time,
the sound is shifted shifted by time - start, so that the start time is time, (5) the sound is scaled by
scale. An empty (zero) sound at time will be returned if all samples are clipped. Normally, you should
accomplish all this using transformations. A transformation applied to a sound has no effect, so use
cue or sound to create a transformable sound (see Section 7.2.1).

snd-yin(sound, minstep, maxstep, rate) [SAL]
(snd-yin sound minstep maxstep rate) [LISP]

Identical to yin. See Section 7.2.2.7.

7.6.3 Filters

These are also “Signal Operators,” the subject of the previous section, but there are so many filter functions,
they are documented in this special section.

Some filters allow time-varying filter parameters. In these functions, filter coefficients are calculated at the
sample rate of the filter parameter, and coefficients are not interpolated.

snd-alpass(sound, delay, feedback) [SAL]
(snd-alpass sound delay feedback) [LISP]

An all-pass filter. This produces a repeating echo effect without the resonances of snd-delay. The
feedback should be less than one to avoid exponential amplitude blowup. Delay is rounded to the
nearest sample. You should use alpass instead (see Section 7.2.2.3).

snd-alpasscv(sound, delay, feedback) [SAL]
(snd-alpasscv sound delay feedback) [LISP]

An all-pass filter with variable feedback. This is just like snd-alpass except feedback is a sound. You
should use alpass instead (see Section 7.2.2.3).

snd-alpassvv(sound, delay, feedback, maxdelay) [SAL]
(snd-alpassvv sound delay feedback maxdelay) [LISP]

An all-pass filter with variable feedback and delay. This is just like snd-alpass except feedback and
delay are sounds, and there is an additional FLONUM parameter, maxdelay, that gives an upper bound on
the value of delay. Note: delay must remain between zero and maxdelay. If not, results are undefined,
and Nyquist may crash. You should use alpass instead (see Section 7.2.2.3).

snd-areson(sound, hz, bw, normalization) [SAL]
(snd-areson sound hz bw normalization) [LISP]

A notch filter modeled after the areson unit generator in Csound. The snd-areson filter is an exact
complement of snd-reson such that if both are applied to the same signal with the same parameters,

v 3.24 125

Nyquist Reference Manual Chapter 7. Nyquist Functions

the sum of the results yeilds the original signal. Note that because of this complementary design, the
power is not normalized as in snd-reson. See snd-reson for details on normalization. You should
use areson instead (see Section 7.2.2.3).

snd-aresoncv(sound, hz, bw, normalization) [SAL]
(snd-aresoncv sound hz bw normalization) [LISP]

This function is identical to snd-areson except the bw (bandwidth) parameter is a sound. Filter
coefficients are updated at the sample rate of bw. The “cv” suffix stands for Constant, Variable,
indicating that hz and bw are constant (a number) and variable (a sound), respectively. This naming
convention is used throughout. You should use areson instead (see Section 7.2.2.3).

snd-aresonvc(sound, hz, bw, normalization) [SAL]
(snd-aresonvc sound hz bw normalization) [LISP]

This function is identical to snd-areson except the hz (center frequency) parameter is a sound. Filter
coefficients are updated at the sample rate of hz. You should use areson instead (see Section 7.2.2.3).

snd-aresonvv(sound, hz, bw, normalization) [SAL]
(snd-aresonvv sound hz bw normalization) [LISP]

This function is identical to snd-areson except both hz (center frequency) and bw (bandwidth) are
sounds. Filter coefficients are updated at the next sample of either hz or bw. You should use areson
instead (see Section 7.2.2.3).

snd-atone(sound, hz) [SAL]
(snd-atone sound hz) [LISP]

A high-pass filter modeled after the atone unit generator in Csound. The snd-atone filter is an exact
complement of snd-tone such that if both are applied to the same signal with the same parameters,
the sum of the results yeilds the original signal. You should use hp instead (see Section 7.2.2.3).

snd-atonev(sound, hz) [SAL]
(snd-atonev sound hz) [LISP]

This is just like snd-atone except that the hz cutoff frequency is a sound. Filter coefficients are
updated at the sample rate of hz. You should use hp instead (see Section 7.2.2.3).

snd-biquad(sound, b0, b1, b2, a1, a2, z1init, z2init) [SAL]
(snd-biquad sound b0 b1 b2 a1 a2 z1init z2init) [LISP]

A general second order IIR filter, where a0 is assumed to be unity. For a1 and a2, the
sign convention is opposite to that of Matlab. All parameters except the input sound are of
type FLONUM. You should probably use one of lowpass2, highpass2, bandpass2, notch2,
allpass2, eq-lowshelf, eq-highshelf, eq-band, lowpass4, lowpass6, lowpass8, highpass4,
highpass6, or highpass8, which are all based on snd-biquad and described in Section 7.2.2.3. For
completeness, you will also find biquad and biquad-m described in that section.

snd-chase(sound, risetime, falltime) [SAL]
(snd-chase sound risetime falltime) [LISP]

A slew rate limiter. The output “chases” the input at rates determined by risetime and falltime. If the
input changes too fast, the output will lag behind the input. This is a form of lowpass filter, but it was

v 3.24 126

Nyquist Reference Manual Chapter 7. Nyquist Functions

created to turn hard-switching square waves into smoother control signals that could be used for linear
crossfades. If the input switches from 0 to 1, the output will linearly rise to 1 in risetime seconds. If the
input switches from 1 to 0, the output will linearly fall to 0 in falltime seconds. The generated slope is
constant; the transition is linear; this is not an exponential rise or fall. The risetime and falltime must
be scalar constants; complain to the author if this is not adequate. The snd-chase function is safe for
ordinary use. See snd-follow in Section 7.6.2 for a related function.

snd-congen(gate, risetime, falltime) [SAL]
(snd-congen gate risetime falltime) [LISP]

A simple “contour generator” based on analog synthesizers. The gate is a sound that normally steps
from 0.0 to 1.0 at the start of an envelop and goes from 1.0 back to 0.0 at the beginning of the release.
At each sample, the output converges to the input exponentially. If gate is greater than the output, e.g.
the attack, then the output converges half-way to the output in risetime. If the gate is less than the
output, the half-time is falltime. The sample rate, starting time, logical-stop-time, and terminate time
are taken from gate. You should use congen instead (see Section 7.2.2.3.

snd-convolve(sound, response) [SAL]
(snd-convolve sound response) [LISP]

Convolves sound by response using a fast convolution algorithm. The sound can be any length, but the
response is computed and stored in in memory. The required compuation time per sample and total
space are proportional to the length of response. Use convolve instead (see Section 7.2.2.3).

snd-delay(sound, delay, feedback) [SAL]
(snd-delay sound delay feedback) [LISP]

Feedback delay. The output, initially sound, is recursively delayed by delay, scaled by feedback,
and added to itself, producing an repeating echo effect. The feedback should be less than one to
avoid exponential amplitude blowup. Delay is rounded to the nearest sample. You should use
feedback-delay instead (see Section 7.2.2.3)

snd-delaycv(sound, delay, feedback) [SAL]
(snd-delaycv sound delay feedback) [LISP]

Feedback delay with variable feedback. This is just like snd-delay except feedback is a sound. You
should use feedback-delay instead (see Section 7.2.2.3).

snd-reson(sound, hz, bw, normalization) [SAL]
(snd-reson sound hz bw normalization) [LISP]

A second-order resonating (bandpass) filter with center frequency hz and bandwidth bw, modeled
after the reson unit generator in Csound. The normalization parameter must be an integer and (like
in Csound) specifies a scaling factor. A value of 1 specifies a peak amplitude response of 1.0; all
frequencies other than hz are attenuated. A value of 2 specifies the overall RMS value of the amplitude
response is 1.0; thus filtered white noise would retain the same power. A value of zero specifies no
scaling. The result sample rate, start time, etc. are takend from sound. You should use reson instead
(see Section 7.2.2.3).

v 3.24 127

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-resoncv(sound, hz, bw, normalization) [SAL]
(snd-resoncv sound hz bw normalization) [LISP]

This function is identical to snd-reson except bw (bandwidth) is a sound. Filter coefficients are
updated at the sample rate of bw. You should use reson instead (see Section 7.2.2.3).

snd-resonvc(sound, hz, bw, normalization) [SAL]
(snd-resonvc sound hz bw normalization) [LISP]

This function is identical to snd-reson except hz (center frequency) is a sound. Filter coefficients are
updated at the sample rate of hz. You should use reson instead (see Section 7.2.2.3).

snd-resonvv(sound, hz, bw, normalization) [SAL]
(snd-resonvv sound hz bw normalization) [LISP]

This function is identical to snd-reson except botth hz (center frequency) and bw (bandwidth) are
sounds. Filter coefficients are updated at the next sample from either hz or bw. You should use reson
instead (see Section 7.2.2.3).

snd-stkchorus(sound, delay, depth, freq, mix) [SAL]
(snd-stkchorus sound delay depth freq mix) [LISP]

A chorus implemented in STK. The parameter delay is a FIXNUM representing the median desired delay
length in samples. A typical value is 6000. The FLONUM parameters depth and freq set the modulation
depth (from 0 to 1) and modulation frequency (in Hz), mix sets the mixture of input sound and chorused
sound, where a value of 0.0 means input sound only (dry) and a value of 1.0 means chorused sound
only (wet). You should use stkchorus instead (see Section 7.2.2.4).

snd-stkpitshift(sound, shift, mix) [SAL]
(snd-stkpitshift sound shift mix) [LISP]

A pitch shifter implemented in STK. The sound is shifted in pitch by shift, a FLONUM representing the
shift factor. A value of 1.0 means no shift. The parameter mix sets the mixture of input and shifted
sounds. A value of 0.0 means input only (dry) and a value of 1.0 means shifted sound only (wet). You
should use pitshift instead (see Section 7.2.2.4).

snd-stkrev(rev-type, sound, decay, mix) [SAL]
(snd-stkrev rev-type sound decay mix) [LISP]

A reverb implemented in STK. The parameter rev-type is a FIXNUM ranging from zero to two and
selects the type of reverb. Zero selects NRev type, one selects JCRev, and two selects PRCRev. The
input sound is processed by the reverb with a decay time in seconds (a FLONUM). The mix, a FLONUM,
sets the mixture of dry input and reverb output. A value of 0.0 means input only (dry) and a value of
1.0 means reverb only (wet). The sample rate is that of sound. You should use nrev, jcrev or prcrev
instead (see Section 7.2.2.4).

snd-tone(sound, hz) [SAL]
(snd-tone sound hz) [LISP]

A first-order recursive low-pass filter, based on the tone unit generator of Csound. The hz parameter is
the cutoff frequency, the response curve’s half-power point. The result sample rate, start time, etc. are
takend from sound. You should use lp instead (see Section 7.2.2.3).

v 3.24 128

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-tonev(sound, hz) [SAL]
(snd-tonev sound hz) [LISP]

This function is identical to snd-tone except hz (cutoff frequency) is a sound. The filter coefficients
are updated at the sample rate of hz. You should use lp instead (see Section 7.2.2.3).

7.6.4 Table-Lookup Oscillator Functions

These functions all use a sound to describe one period of a periodic waveform. In the current implementation,
the sound samples are copied to an array (the waveform table) when the function is called. To make a
table-lookup oscillator generate a specific pitch, we need to have several pieces of information:

• A waveform to put into the table. This comes from the sound parameter.

• The length (in samples) of the waveform. This is obtained by reading samples (starting at the sound’s
start time, not necessarily at time zero) until the physical stop time of the sound. (If you read the
waveform from a file or generate it with functions like sim and sine, then the physical and logical
stop times will be the same and will correspond to the duration you specified, rounded to the nearest
sample.)

• The intrinsic sample rate of the waveform. This sample rate is simply the sample rate property of
sound.

• The pitch of the waveform. This is supplied by the step parameter and indicates the pitch (in steps) of
sound. You might expect that the pitch would be related to the period (length) of sound, but there is the
interesting case that synthesis based on sampling often loops over multiple periods. This means that
the fundamental frequency of a generated tone may be some multiple of the looping rate. In Nyquist,
you always specify the perceived pitch of the looped sound if the sound is played at the sound’s own
sample rate.

• The desired pitch. This is specified by the hz parameter in Hertz (cycles per second) in these low-level
functions. Note that this is not necessarily the “loop” rate at which the table is scanned. Instead,
Nyquist figures what sample rate conversion would be necessary to “transpose” from the step which
specifies the original pitch of sound to hz, which gives the desired pitch. The mixed use of steps and
Hertz came about because it seemed that sample tables would be tagged with steps (“I sampled a
middle-C”), whereas frequency deviation in the fmosc function is linear, thus calling for a specification
in Hertz.

• The desired sample rate. This is given by the sr parameter in Hertz.

Other parameters common to all of these oscillator functions are:

• t0, the starting time, and

• phase, the starting phase in degrees. Note that if the step parameter indicates that the table holds more
than one fundamental period, then a starting phase of 360 will be different than a starting phase of 0.

v 3.24 129

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-amosc(sound, step, sr, hz, t0, am, phase) [SAL]
(snd-amosc sound step sr hz t0 am phase) [LISP]

An oscillator with amplitude modulation. The sound am specifies the amplitude and the logical stop
time. The physical stop time is also that of am. You should use amosc instead (see Section 7.2.2.1).

snd-fmosc(s, step, sr, hz, t0, fm, phase) [SAL]
(snd-fmosc s step sr hz t0 fm phase) [LISP]

A Frequency Modulation oscillator. The sound fm specifies frequency deviation (in Hertz) from hz.
You should use fmosc instead (see Section 7.2.2.1).

snd-fmfb(t0, hz, sr, index, dur) [SAL]
(snd-fmfb t0 hz sr index dur) [LISP]

A Feedback FM oscillator. The resulting sound starts at t0, has a fundamental frequency of hz, a sample
rate of sr, and a duration of dur seconds. The index is a FLONUM that specifies the amount of feedback.
You should use fmfb instead (see Section 7.2.2.1).

snd-fmfbv(t0, hz, sr, index)
(snd-fmfv t0 hz sr index) [LISP]

A Feedback FM oscillator. The resulting sound starts at t0, has a fundamental frequency of hz, and
a sample rate of sr. The index is a SOUND that specifies the amount of feedback and determines the
duration. You should use fmfb instead (see Section 7.2.2.1).

snd-buzz(n, sr, hz, t0, fm) [SAL]
(snd-buzz n sr hz t0 fm) [LISP]

A buzz oscillator, which generates n harmonics of equal amplitude. The fm specifies frequency
deviation (in Hertz) from hz. You should use buzz instead (see Section 7.2.2.1).

snd-pluck(sr, hz, t0, d, final-amp) [SAL]
(snd-pluck sr hz t0 d final-amp) [LISP]

A Karplus-Strong plucked string oscillator with sample rate sr, fundamental frequency hz, starting
time t0, duration d, initial amplitude approximately 1.0 (not exact because the string is initialized
with random values) and final amplitude approximately final-amp. You should use pluck instead (see
Section 7.2.2.1).

snd-osc(s, step, sr, hz, t0, d, phase) [SAL]
(snd-osc s step sr hz t0 d phase) [LISP]

A simple table lookup oscillator with fixed frequency. The duration is d seconds. You should use osc
instead (see Section 7.2.2.1).

snd-partial(sr, hz, t0, env) [SAL]
(snd-partial sr hz t0 env) [LISP]

This is a special case of snd-amosc that generates a sinusoid starting at phase 0 degrees. The env
parameter gives the envelope or any other amplitude modulation. You should use partial instead (see
Section 7.2.2.1).

v 3.24 130

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-sine(t0, hz, sr, d) [SAL]
(snd-sine t0 hz sr d) [LISP]

This is a special case of snd-osc that always generates a sinusoid with initial phase of 0 degrees. You
should use sine instead (see Section 7.2.2.1).

snd-sampler(s, step, start, sr, hz, t0, fm, npoints) [SAL]
(snd-sampler s step start sr hz t0 fm npoints) [LISP]

Returns a sound constructed by reading a sample from beginning to end and then splicing on copies of
the same sound from a loop point to the end. The sound s is the source sound to be looped, and step
(a FLONUM) is the nominal fundamental frequency (in steps, not Hz) of s. The start (a FLONUM)
is the time in seconds at which to start the loop, sr (a FLONUM) is the desired sample rate of the
output, hz is the nominal fundamental frequency of the output, t0 (a FLONUM) is the starting time of
the output, and fm (a SOUND) is frequency modulation that is added to hz to determine the output
fundamental frequency. The parameter npoints (a FIXNUM) specifies how many points should be used
for sample interpolation. Currently this parameter defaults to 2 and only 2-point (linear) interpolation
is implemented. It is an error to modulate such that the frequency is negative. Note also that the loop
point may be fractional. This function implements a typical sampling synthesis algorithm, looping and
resampling the input according to the ratio between the desired fundamental frequency (which is the
sum of hz and fm) and the nominal fundamental of the looped sound (which is assumed to be given by
step). You should use sampler instead (see Section 7.2.2.1).

snd-siosc(tables, sr, hz, t0, fm) [SAL]
(snd-siosc tables sr hz t0 fm) [LISP]

A Spectral Interpolation Oscillator with frequency modulation. The tables is a list of sounds and
sample counts as follows: (table0 count1 table1 ... countN tableN). The initial waveform is given by
table0, which is interpolated linearly to table1 over the first count1 samples. From count1 to count2
samples, the waveform is interpolated from table1 to table2, and so on. If more than countN samples
are generated, tableN is used for the remainder of the sound. The duration and logical stop time of the
sound is taken from fm, which specified frequency modulation (deviation) in Hertz. You should use
siosc instead (see Section 7.2.2.1).

7.6.5 Phase Vocoder Functions

snd-phasevocoder(s, map, fftsize, hopsize mode) [SAL]
code{(snd-phasevocoder s map fftsize hopsize mode) [LISP]}

Phase vocoder: Identical to phasevocoder except that fftsize, hopsize and mode are not optional.
Specify -1 to get the default values for fftsize and hopsize. Specify 0 for the default value of mode. You
should use phasevocoder instead (see Section 7.2.2.6).

v 3.24 131

Nyquist Reference Manual Chapter 7. Nyquist Functions

7.6.6 Physical Model Functions

These functions perform some sort of physically-based modeling synthesis.

snd-bandedwg(freq, bowpress-env, preset, sr) [SAL]
(snd-bandedwg freq bowpress-env preset sr) [LISP]

A Banded Wave Guide Percussion instrument implemented in STK. The parameter freq is a FLONUM in
Hz, bowpress-env is a SOUND that ranges from zero to one, preset is a FIXNUM, and sr is the desired
sample rate in Hz. Currently, there are four presets: uniform-bar (0), tuned-bar (1), glass-harmonica
(2), and tibetan-bowl (3). You should use wg-uniform-bar, wg-tuned-bar, wg-glass-harm, or
wg-tibetan-bowl instead (see Section 7.2.2.5).

snd-bowed(freq, bowpress-env, sr) [SAL]
(snd-bowed freq bowpress-env sr) [LISP]

A bowed string instrument implemented in STK. The freq is a FLONUM in Hertz, bowpress-env is a
SOUND that ranges from z ero to one, and sr is the desired sample rate (a FLONUM). You should use
bowed instead (see Section 7.2.2.5).

snd-bowed-freq(freq, bowpress-env, freq-env, sr) [SAL]
(snd-bowed-freq freq bowpress-env freq-env sr) [LISP]

A bowed model just like snd-bowed but with an additional parameter for continuous frequency control.
You should use bowed-freq instead (see Section 7.2.2.5).

snd-clarinet(freq, breath-env, sr) [SAL]
(snd-clarinet freq breath-env sr) [LISP]

A clarinet model implemented in STK. The freq is a FLONUM in Hertz, breath-env is a SOUND that ranges
from zero to one, and sr is the desired sample rate (a FLONUM). You should use clarinet instead (see
Section 7.2.2.5).

snd-clarinet-freq(freq, breath-env, freq-env, sr) [SAL]
(snd-clarinet-freq freq breath-env freq-env sr) [LISP]

A clarinet model just like snd-clarinet but with an additional parameter for continuous frequency
control. You should use clarinet-freq instead (see Section 7.2.2.5).

snd-clarinet-all(freq, vibrato-freq, vibrato-gain, freq-env, breath-env,
reed-stiffness, noise, sr) [SAL]

(snd-clarinet-all freq vibrato-freq vibrato-gain freq-env breath-env
reed-stiffness noise sr) [LISP]

A clarinet model just like snd-clarinet-freq but with additional parameters for vibrato generation
and continuous control of reed stiffness and breath noise. You should use clarinet-all instead (see
Section 7.2.2.5).

snd-flute(freq, breath-env, sr) [SAL]
(snd-flute freq breath-env sr) [LISP]

A flute implemented in STK. The freq is a FLONUM in Hertz, breath-env is a SOUND that ranges from
zero to one, and sr is the desired sample rate (a FLONUM). You should use flute instead (see Section
7.2.2.5).

v 3.24 132

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-flute-freq(freq, breath-env, freq-env, sr) [SAL]
(snd-flute-freq freq breath-env freq-env sr) [LISP]

A flute model just like snd-flute but with an additional parameter for continuous frequency control.
You should use flute-freq instead (see Section 7.2.2.5).

snd-flute-all(freq, vibrato-freq, vibrato-gain, freq-env, breath-env,
jet-delay, noise, sr) [SAL]

(snd-flute-all freq vibrato-freq vibrato-gain freq-env breath-env
jet-delay noise sr) [LISP]

A flute model just like snd-flute-freq but with additional parameters for vibrato generation and
continuous control of breath noise. You should use flute-all instead (see Section 7.2.2.5).

snd-mandolin(t0, freq, dur, body-size, detune, sr) [SAL]
(snd-mandolin t0 freq dur body-size detune sr) [LISP]

A plucked double-string instrument model implemented in STK. The t0 parameter is the starting time
(in seconds), freq is a FLONUM in Hz, body-size and detune are FLONUMs, and sr is the desired sample
rate. You should use mandolin instead (see Section 7.2.2.5).

snd-modalbar(t0, freq, preset, dur, sr) [SAL]
(snd-modalbar t0 freq preset dur sr) [LISP]

Struck bar instrument model implemented in STK. The parameter t0 is the starting time (in seconds),
freq is a FLONUM in Hz, preset is a FIXNUM ranging from 0 to 8, dur is a FLONUM that sets the duration
(in seconds) and sr is the desired sample rate. You should use modalbar instead (see Section 7.2.2.5).

snd-sax(freq, breath-env, sr) [SAL]
(snd-sax freq breath-env sr) [LISP]

A sax model implemented in STK. The freq is a FLONUM in Hertz, breath-env is a SOUND that ranges
from zero to one, and sr is the desired sample rate (a FLONUM). You should use sax instead (see Section
7.2.2.5).

snd-sax-freq(freq, freq-env, breath-env, sr) [SAL]
(snd-sax-freq freq freq-env breath-env sr) [LISP]

A sax model just like snd-sax but with an additional parameter for continuous frequency control. You
should use sax-freq instead (see Section 7.2.2.5).

snd-sax-all(freq, vibrato-freq, vibrato-gain, freq-env, breath-env,
reed-stiffness, noise, blow-pos, reed-table-offset, sr) [SAL]

(snd-sax-all freq vibrato-freq vibrato-gain freq-env breath-env
reed-stiffness noise blow-pos reed-table-offset sr) [LISP]

A sax model just like snd-sax-freq but with additional parameters for vibrato generation and
continuous control of reed stiffness, breath noise, excitation position, and reed table offset. You should
use sax-all instead (see Section 7.2.2.5).

v 3.24 133

Nyquist Reference Manual Chapter 7. Nyquist Functions

snd-sitar(t0, freq, dur, sr) [SAL]
(snd-sitar t0 freq dur sr) [LISP]

A sitar model implemented in STK. The parameter t0 is the starting time, freq is a FLONUM (in Hz), E
dur sets the duration and sr is the sample rate (in Hz) of the resulting sound. You should use sitar
instead (see Section 7.2.2.5).

7.6.7 Sequence Support Functions

The next two functions are used to implement Nyquist’s seq construct.

snd-seq(sound, closure) [SAL]
(snd-seq sound closure) [LISP]

This function returns sound until the logical stop time of sound. Then, the XLISP closure is evaluated,
passing it the logical stop time of sound as a parameter. The closure must return a sound, which is then
added to sound. (An add is used so that sound can continue past its logical stop if desired.) Do not call
this function directly.

snd-multiseq(array, closure) [SAL]
(snd-multiseq array closure) [LISP]

This function is similar to snd-seq except the first parameter is a multichannel sound rather than
a single sound. A multichannel sound is simply an XLISP array of sounds. An array of sounds is
returned which is the sum of array and another array of sounds returned by closure. The closure is
passed the logical stop time of the multichannel sound, which is the maximum logical stop time of any
element of array. The sample rates and number of channels returned from the closure must match the
first multi-channel sound in the sequence. Do not call this function directly.

v 3.24 134

8 Nyquist Globals

There are many global variables in Nyquist. A convention in Lisp is to place asterisks (*) around global
variables, e.g. *table*. This is only a convention, and the asterisks are just like any other letter as far as
variable names are concerned. Here are some globals users should know about:

~=tolerance
The tolerance used by the SAL "approximately equal" operator (~=) to determine if two numbers are
approximately equal.

table
Default table used by osc and other oscillators. Initially set to the sinusoid in *sine-table*.

A4-Hertz
Frequency of A4 in Hertz.. Note: you must call (set-pitch-names) to recompute pitches after
changing *A4-Hertz*.

autonorm
The normalization factor to be applied to the next sound when *autonorm-type* is ’previous. See
Sections 5.3 and 7.5.

autonormflag
Enables the automatic normalization feature of the play command. You should use (autonorm-on)
and (autonorm-off) rather than setting *autonormflag* directly. See Sections 5.3 and 7.5.

autonorm-max-samples
Specifies how many samples will be computed searching for a peak value when *autonorm-type* is
’lookahead. See Sections 5.3 and 7.5.

autonorm-previous-peak
The peak of the previous sound generated by play. This is used to compute the scale factor for the
next sound when *autonorm-type* is ’previous. See Sections 5.3 and 7.5.

autonorm-target
The target peak amplitude for the autonorm feature. The default value is 0.9. See Sections 5.3 and 7.5.

135

Nyquist Reference Manual Chapter 8. Nyquist Globals

autonorm-type
Determines how the autonorm feature is implemented. Valid values are ’lookahead (the default) and
’previous. See Sections 5.3 and 7.5.

breakenable
Controls whether XLISP enters a break loop when an error is encountered. See Section C.15.

clipping-error
If the peak absolute amplitude value of a sound saved or played exceeds *clipping-threshold*, an
XLISP error is raised. See *clipping-threshold* for more detail.

clipping-threshold
See *clipping-error* for a description of this variable. *clipping-threshold*
is initialized to 127/128. This number is conservative, and it is possible
to slightly exceed this value, even with 8-bit files without actual clipping
(consider rounding. Also, floating point format files will not clip even when the amplitude exceeds
1.0. Note that a “clipping” threshold of 1.0 is optimistic: 1.0 corresponds to a 16-bit integer value of
32,768 (215), but the maximum positive 16-bit integer is 32,767. Thus, a positive sample of 1.0 will
clip when written or played as 16-bit audio.

control-srate
Part of the environment, establishes the control sample rate. See Section 3.1 for details.

default-plot-file
The default file for plot data (written by Nyquist, read by NyquistIDE). Default value is "points.dat".

default-sf-bits
The default bits-per-sample for sound files. Typically 16.

default-sf-dir
The default sound file directory. Unless you give a full path for a file, audio files are assumed to be in
this directory. (Applies to many functions that deal with sound files. Check the function description to
see if *default-sf-dir* applies.)

default-sf-format
The default sound file format. When you write a file, this will be the default format: AIFF for Mac and
most Unix systems, NeXT for NeXT systems, and WAV for Win32.

default-sf-srate
The default sample rate for sound files. Typically 44100.0, but often set to 22050.0 for speed in
non-critical tasks.

default-control-srate
Default value for *control-srate*. This value is restored when you execute (top) to pop out of a
debugging session. Change it by calling (set-control-srate value).

v 3.24 136

Nyquist Reference Manual Chapter 8. Nyquist Globals

default-sound-srate
Default value for *sound-srate*. This value is restored when you execute (top) to pop out of a
debugging session. Change it by calling (set-sound-srate value).

file-separator
The character that separates directories in a path, e.g. “/” for Unix, “:” for Mac, and “\” for Win32.
This is normally set in system.lsp.

lpslider-cutoff
The cutoff frequency used by lpslider, described in Section 9.1.3. The default value is 20Hz. If
unbound, this variable is set when you load sliders.lsp.

rslt
When a function returns more than one value, *rslt* is set to a list of the “extra” values. This provides
a make-shift version of the multiple-value-return facility in Common Lisp.

saw-table
A single cycle sawtooth wave intended for use by table-lookup oscillators such as osc. This is the
waveform used by osc-saw. Note that some aliasing will normally occur when using this waveform,
which is not band-limited.

sine-table
A single cycle sinusoid intended for use by table-lookup oscillators such as osc.

snd-device
Normally, this is set by NyquistIDE. Select the audio output device by setting this to a FIXNUM to select
a device by index number or to a STRING to select a device by name. If a STRING is provided, the
first device whose name contains the STRING (as a substring) is selected. (See *snd-list-devices*
below.) If the value is unbound or NULL, *snd-device-default* is used (see below).

snd-device-default
If *snd-device* is unbound or null, this variable can select the audio output device in the same
way as *snd-device*. Normally, this variable would be set in an initialization file that provides
a default value that can be overridden by the NyquistIDE preferences. If both *snd-device* and
snd-device-default are null, the default PortAudio device is used.

snd-list-devices
List all audio output devices (as text output) when a sound is played. By inspecting this list, one can
determine possible values for *snd-device* and see what device is being selected by Nyquist. One
cannot (currently) obtain the list of devices as an XLISP value. The default behavior is to list the
devices and some instructions only the first time any sound is played. Setting *snd-list-devices*
to a value (t or nil) before playing a sound will override this behavior.

v 3.24 137

Nyquist Reference Manual Chapter 8. Nyquist Globals

sound-srate
Part of the environment, establishes the audio sample rate. See Section 3.1 for details.

soundenable
Controls whether writes to a sound file will also be played as audio. Set this variable by calling
(sound-on) or (sound-off).

tracenable
Controls whether XLISP prints a backtrace when an error is encountered.

tri-table
A single cycle triangle wave intended for use by table-lookup oscillators such as osc. This is the
waveform used by osc-tri. Note that some aliasing will normally occur when using this waveform,
which is not band-limited.

XLISP variables
See Section C.15 for a list of global variables defined by XLISP.

Environment variables
See Section 3.1 for definitions of variables used in the environment for behaviors. In general, you
should never set or access these variables directly.

Various constants
See Section 1.8 for definitions of predefined constants for loudness, duration, and pitch.

v 3.24 138

9 Interactive Nyquist

Nyquist is not intended for real-time performance, but it has some features that allow you to adjust parameters
interactively. The basic idea is that there is an array of 1000 floating point values, called sliders, that can
be accessed while synthesizing sounds in Nyquist. The slider unit generator returns a signal that copies
the current value of a slider value. You can change the slider value while playing sounds using either Open
Sound Control or the NyquistIDE.

Sounds are normally computed on demand. So the result returned by slider does not immediately compute any
samples. Samples are only computed when something tries to use this signal. At that time, the slider value is read.
Normally, if the slider is used to control a sound, you will hear changes in the sound pretty soon after the slider value
changes. However, one thing that can interfere with this is that SOUND samples are computed in blocks of about 1000
samples. When the slider value is read, the same value is used to fill a block of 1000 samples, so even if the sample
rate is 44,100 Hz, the effective slider sample rate is 44,100/1000, or 44.1 Hz. If you give the slider a very low sample
rate, say 1000, then slider value changes will only be noticed by Nyquist approximately once per second. For this
reason, you should normally use the audio sample rate (typically 44,100 Hz) for the rate of the snd-slider output
SOUND. (Yes, this is terribly wasteful to represent each slider value with 1000 samples, but Nyquist was not designed for
low-latency computation, and this is an expedient work-around.)

When you load sliders.lsp, which defines a number of slider functions, two important settings may be changed.
First autonorm-off is called. The problem with auto-normalization is that it works by computing 1 million samples
ahead of real time to determine a normalization factor. If Nyquist computes ahead, it will be unable to respond to
control changes until the million samples (about 20 seconds) have been played. Secondly, snd-set-latency is used
to set the audio latency to 0.02s (20 milliseconds). Normally, Nyquist uses a generous 0.3s latency which allows
Nyquist to stop computing audio and run garbage collection without breaks in the audio output. At 20ms, interactivity
is greatly enhanced because changes do not sit in audio buffers for 300ms, but you may notices some break-up in the
audio, especially when garbage collection takes place. The latency can be changed to any value you like after you load
sliders.lsp.

In addition to reading sliders as continually changing SOUNDs, you can get the slider value as a Lisp FLONUM (a floating
point number) using get-slider-value. This might be useful if you are computing a sequence of many notes (or
other sound events) and want to apply the current slider value to the whole note or sound event.

Other unit generators exist to instantiate behaviors and to stop sounds according to slider values. These will be described
below.

139

Nyquist Reference Manual Chapter 9. Interactive Nyquist

9.1 Interactive Control with the NyquistIDE

To control sounds interactively using the NyquistIDE, you first create a control panel, then populate the panel with
sliders and buttons. These will send values into the sliders array in the Nyquist process. To control a sound, you use
built-in functions to retrieve real-time values from the sliders array as sound is being played. Further discussion and
examples can be found in nyquist/lib/sliders/slider-demos.sal.

9.1.1 Creating a Control Panel

A control panel is created with make-slider-panel, which takes a panel name and color as parameters. Control
panels can only be created by executing code in Nyquist. There is no way to configure control panels directly using the
NyquistIDE. Control panels can be deleted interactively using the close button on the panel or through code by calling
close-slider-panel.

make-slider-panel(name, color) [SAL]
(make-slider-panel name color) [LISP]

Create a control panel in the IDE. The title of the control panel window is given by name, a STRING. The
color of the panel is given by color, a FIXNUM from 0 through 12. The color 0 is gray. Other colors are
implementation-dependent, but different numbers give distinguishable colors. You must load sliders.lsp to
access this function.

close-slider-panel(name) [SAL]
(close-slider-panel name) [LISP]

Close a control panel in the NyquistIDE named by name, a STRING. Any embedded controls (sliders or buttons)
are also destroyed. You must load sliders.lsp to access this function.

9.1.2 Creating Controls

You can create slider and button controls. A slider control adjusts a floating point value in the sliders array and accessible
as a time-varying signal (a SOUND) or as a FLONUM. A button control sets a floating point value in the sliders array to
zero (0.0) or one (1.0). The value changes when the left mouse button is pressed over the button control and changes
back when the mouse button is released.

make-slider(name, init, low, high) [SAL]
(make-slider name init low high) [LISP]

Create a slider in the most recently created control panel. (Thus, you should populate a control panel with sliders
and buttons before creating another control panel.) Sliders have a label specified by name, a STRING, an initial
value specified by init, a FLONUM, a minimum value specified by low, a FLONUM, and a maximum value
specified by high, a FLONUM. Sliders are added to the current panel in order from top to bottom. You must load
sliders.lsp to access this function.

v 3.24 140

Nyquist Reference Manual Chapter 9. Interactive Nyquist

make-button(name [, normal]) [SAL]
(make-button name [normal]) [LISP]

Create a button in the most recently created control panel. Buttons have a label specified by name, a STRING,
and a "normal value" specified by 0 or 1 (a FIXNUM). If 0 is specified, the value controlled by the button is 0
when the button is released and 1 when the button is pressed. If 1 is specified, the normal value is 1 changing to
0 when the button is pressed. Buttons are added to the control panel in order from top to bottom. You must load
sliders.lsp to access this function.

9.1.3 Accessing Control Values

Each control created by make-slider or make-button is assigned a slider index from 10 to 999. Control changes are
passed via hidden text input from the NyquistIDE to the nyquist process, where the values are converted to floats and
stored in the slider array. You can then access these values with either slider, lpslider, or get-slider-value.

slider(number [, dur]) [SAL]
slider(name [, dur]) [SAL]
slider(panel, name [, dur]) [SAL]
(slider number [dur]) [LISP]
(slider name [dur]) [LISP]
(slider panel name [dur]) [LISP]

Create a SOUND that reads signal values from the slider array. In the first form, the first parameter is the index
(a FIXNUM) of the value in the slider array. In the second form, the slider value will be controlled by the
NyquistIDE control created by make-slider or make-button using the same name, a STRING. The control
must be in the most recently created panel. In the third form, the panel named panel is searched for the control
named name to determine the value. In all cases, the optional dur, a FLONUM, is used to determine the duration
of the sound. This duration is scaled by the environment in the usual way. You must load sliders.lsp to
access this function.

lpslider(number [, dur]) [SAL]
lpslider(name [, dur]) [SAL]
lpslider(panel, name [, dur]) [SAL]
(lpslider number [dur]) [LISP]
(lpslider name [dur]) [LISP]
(lpslider panel name [dur]) [LISP]

Create a SOUND based on the value of an interactive control. This function is exactly like slider, except the
sound is low-pass filtered to avoid sudden jumps when the control value is adjusted. The low-pass filter cutoff is
determined by *lpslider-cutoff*, which is initialized to 20Hz when slider.lsp is loaded. You must load
sliders.lsp to access this function.

get-slider-value(number) [SAL]
get-slider-value(name) [SAL]
get-slider-value(panel, name) [SAL]
(get-slider-value number) [LISP]
(get-slider-value name) [LISP]
(get-slider-value panel name) [LISP]

Get a value (a FLONUM) stored in the slider array. The array is accessed directly if the parameter is number,
a FIXNUM. The index can be determined by searching the most recently created control panel by name, a

v 3.24 141

Nyquist Reference Manual Chapter 9. Interactive Nyquist

STRING, if only name is given. If both panel and name are given (STRINGS), the named panel is searched for
the named control. The result is a FLONUM. You must load sliders.lsp to access this function.

snd-slider(index, t0, srate, duration) [SAL]
(snd-slider index t0 srate duration) [LISP]

Create a sound controlled by the slider named by index (an integer index into the array of sliders). The function
returns a sound. Since Nyquist sounds are computed in blocks of samples, and each block is computed at once,
each block will contain copies of the current slider value. Normally, you would call slider (see above) rather
than this low-level function.

9.1.4 Starting and Stopping Sounds

All Nyquist sounds have a duration. Even the slider unit generator has a duration and terminates at the end of that
duration. In most cases, you will instead want interactive functions to run until you interactively ask them to stop. The
stop-on-zero function terminates when an input signal (typically a slider) goes to zero. This can be used to terminate
a complex interatively controlled sound. For example, here is a tone that terminates when the Stop button is pressed:

exec make-button("Stop", 1)

function can-stop()
play (hzosc(1000) * stop-on-zero(slider("Stop"))) ~ 100

The stretch factor of 100 will cause this tone to play for 100 seconds. However, if the button named "Stop" is pressed, it
will change value from the "normal" value 1 to 0. When the signal goes to zero, stop-on-zero will terminate. The
multiplication then immediately terminates (because anything multiplied by zero will be zero; termination is just an
efficient way to return zeros from now on). Since the multiplication is the top-level sound being played, the play stops.

Another thing you might want to do with interactive control is start some sound. The trigger function computes an
instance of a behavior each time an input SOUND goes from zero to greater-than-zero. This can be used, for example, to
create a sequence of sound events interactively. For example:

exec make-button("Trigger", 0)

function trigger-me()
play trigger(slider("Trigger", 100), pluck(c3))

Here, a button control changes value from 0 to 1 when the button is pressed. This value is retrieved by the slider
function, which runs for 100 seconds. When the button and hence the slider goes from 0 to 1, the behavior, pluck(c3)
is instantiated. Many instances can be triggered by the button.

stop-on-zero(s) [SAL]
(stop-on-zero s) [LISP]

Return a SOUND that is identical to s, a SOUND, except the returned sound terminates when s first goes to zero.
When a sound terminates, it remains at zero. A SOUND multiplication terminates when either parameter terminates,
so multiplying by stop-on-zero is a way to terminate a sound interactively. (See the example above.) You
must load sliders.lsp to access this function.

v 3.24 142

Nyquist Reference Manual Chapter 9. Interactive Nyquist

trigger(s, beh) [SAL]
(trigger s beh) [LISP]

Returns a sound which is the sum of zero or more possibly overlapping instances of the behavior beh. One
instance is created each time SOUND s makes a transition from less than or equal to zero to greater than zero. (If
the first sample of s is greater than zero, an instance is created immediately.) The start time of the result is the
start time of s, and zero samples will be generated until the first instance of beh. The sample rate of the result
is *sound-srate*, and all instances of beh must have the same *sound-srate* sample rate. The behaviors
(instances of beh) must be (monophonic) SOUNDs. The stop time of the result is the maximum stop time of s and
all sounds returned by instances of the behavior. This function is particularly designed to allow behaviors to be
invoked in real time. See the trigger-me function definition shown above.
An implementation note: There is no way to have trigger return a multichannel sound. An alternative
implementation would be a built-in function to scan ahead in a sound to find the time of the next zero crossing.
This could be combined with some LISP code similar to seq to sum up instances of the closure. However, this
would force arbitrary look-ahead and therefore would not work with real-time inputs, which was the motivation
for trigger in the first place.
Warning: The beh argument of trigger is converted to a closure that captures the current environment, including
any variables in scope. The following example illustrates a problem where s is a local variable:

(defun example (snd) (trigger snd (pluck c4)))

or in SAL:
function example(snd) return trigger(snd, pluck(c4))

The problem here is that snd will be captured by the closure built from pluck(c4). As trigger begins to
evaluate snd looking for zero crossings, the samples from snd will be retained in memory because snd is retained
in the closure. A solution is the following:

(defmacro unbind (sym) `(let ((x ,sym)) (setf ,sym nil) x))
(defun example (snd) (trigger (unbind snd) (pluck c4)))

or in SAL:
;; unbind must be defined as above and loaded from a .lsp file
function example(snd) return trigger(unbind(snd), pluck(c4))

In this code, snd is still retained by the constructed closure, but it is set to nil by unbind, which returns the
value of snd. Thus, the only surviving reference to the original value of snd is held by trigger, which frees
samples immediately after computing them. No samples are retained in memory.

snd-stoponzero(s) [SAL]
(snd-stoponzero s) [LISP]

This function is identical to stop-on-zero. You should use stop-on-zero instead.

snd-trigger(s, closure) [SAL]
(snd-trigger s closure) [LISP]

This is a low-level support function for trigger. The closure takes a starting time and returns a SOUND. See
trigger above for more details. Use trigger as described above and do not call this function directly.

9.2 Using Open Sound Control

Open Sound Control (OSC) is a simple protocol for communicating music control parameters between software appli-
cations and across networks. For more information, see http://www.cnmat.berkeley.edu/OpenSoundControl/.

v 3.24 143

Nyquist Reference Manual Chapter 9. Interactive Nyquist

The Nyquist implementation of Open Sound Control is simple: an array of floats can be set by OSC messages and read
by Nyquist functions. That is about all there is to it.

The slider and get-slider-value functions, described above, can be used to access these values within Nyquist.
Each of these functions can take a slider array index to specify which value to use. Since make-slider allocates slider
indices starting at 10, it is recommended that you control sliders 0 through 9 via OSC. If you change a slider array value
via OSC that is already controlled by a graphical slider in the NyquistIDE, the graphical slider will not be updated or
synchronized to the OSC value. (And there is no current way to send OSC command to the NyquistIDE.)

Note: Open Sound Control must be enabled by calling osc-enable(t). If this fails under Windows, see the installation
instructions in sys/win/README.txt regarding SystemRoot.

osc-enable(flag) [SAL]
(osc-enable flag) [LISP]

Enable or disable Open Sound Control. (See Section 9.2.) Enabling creates a socket and a service that listens
for UDP packets on port 7770. Currently, only two messages are accepted by Nyquist. The first is of the form
/slider with an integer index and a floating point value. These set internal slider values accessed by the slider
and get-slider-value functions. The second is of the form /wii/orientation with two floating point
values. This message is a special case to support the DarwiinRemoteOsc program which can relay data from a
Nintendo WiiMote device to Nyquist via OSC. The two orientation values control sliders 0 and 1. Disabling
terminates the service (polling for messages) and closes the socket. The previous state of enablement is returned,
e.g. if OSC is enabled and flag is nil, OSC is disabled and T (true) is returned because OSC was enabled at
the time of the call. This function only exists if Nyquist is compiled with the compiler flag OSC. Otherwise,
the function exists but always returns the symbol DISABLED. Warning: there is the potential for network-based
attacks using OSC. It is tempting to add the ability to evaluate XLISP expressions sent via OSC, but this would
create unlimited and unprotected access to OSC clients. For now, it is unlikely that an attacker could do more
than manipulate slider values.

9.2.1 Sending Open Sound Control Messages

A variety of programs support OSC. The only OSC message interpreted by Nyquist has an address of /slider, and
two parameters: an integer slider number and a float value, nominally from 0.0 to 1.0.

9.2.2 Python3 OSC Interface Demo

In nyquist/demos/osc are two programs that demonstrate controlling Nyquist sounds with Python in real time.
Open nyquist/demos/osc/getosc.sal in the NyquistIDE and read the comments. There are several functions you
can run or play while executing the Python program nyquist/demos/osc/nyquistosc.py from a command line
(terminal) window.

9.2.3 Test Programs in C

Two small programs are included in the Nyquist distribution for sending OSC messages. (Both can be found in the same
directory as the nyquist executable.) The first one, osc-test-client sends a sequence of messages that just cause

v 3.24 144

Nyquist Reference Manual Chapter 9. Interactive Nyquist

slider 0 to ramp slowly up and down. If you run this on a command line, you can use "?" or "h" to get help information.
There is an interactive mode that lets you send each OSC message by typing RETURN.

9.2.4 The ser-to-osc Program

The second program is ser-to-osc, a program that reads serial input (for example from a PIC-based microcontroller)
and sends OSC messages. Run this command-line program from a shell (a terminal window under OS X or Linux; use
the CMD program under Windows). You must name the serial input device on the command line, e.g. under OS X, you
might run:

./ser-to-osc /dev/tty.usbserial-0000103D

(Note that the program name is preceded by “./". This tells the shell exactly where to find the executable program in
case the current directory is not on the search path for executable programs.) Under Windows, you might run:

ser-to-osc com4

(Note that you do not type “./” in front of a windows program.)

To use ser-to-osc, you will have to find the serial device. On the Macintosh and Linux, try the following:

ls /dev/*usb*

This will list all serial devices with “usb” in their names. Probably, one will be a name similar to
/dev/tty.usbserial-0000103D. The ser-to-osc program will echo data that it receives, so you should
know if things are working correctly.

Under Windows, open Control Panel from the Start menu, and open the System control panel. Select the Hardware tab
and click the Device Manager button. Look in the device list under Ports (COM & LPT). When you plug in your serial
or USB device, you should see a new entry appear, e.g. COM4. This is the device name you need.

The format for the serial input is: any non-whitespace character(s), a slider number, a slider value, and a newline
(control-j or ASCII 0x0A). These fields need to be separated by tabs or spaces. An optional carriage return (control-m
or ASCII 0x0D) preceding the ASCII 0x0A is ignored. The slider number should be in decimal, and theh slider value is
a decimal number from 0 to 255. This is scaled to the range 0.0 to 1.0 (so an input of 255 translates to 1.0).

There is a simple test program in nyquist/lib/osc/osc-test.lsp you can run to try out control with Open Sound
Control. There are two examples in that file. One uses snd-slider to control the frequency of an oscillator. The other
uses get-slider-value to control the pitch of grains in a granular synthesis process.

v 3.24 145

10 Time/Frequency Transformation

Nyquist provides functions for FFT and inverse FFT operations on streams of audio data. Because sounds can be of any
length, but an FFT operates on a fixed amount of data, FFT processing is typically done in short blocks or windows that
move through the audio. Thus, a stream of samples is converted in to a sequence of FFT frames representing short-term
spectra.

Nyquist does not have a special data type corresponding to a sequence of FFT frames. This would be nice, but it would
require creating a large set of operations suitable for processing frame sequences. Another approach, and perhaps the
most “pure” would be to convert a single sound into a multichannel sound, with one channel per bin of the FFT.

Instead, Nyquist violates its “pure” functional model and resorts to objects for FFT processing. A sequence of frames
is represented by an XLISP object. Whenever you send the selector :next to the object, you get back either NIL,
indicating the end of the sequence, or you get an array of FFT coefficients.

The Nyquist function snd-fft (mnemonic, isn’t it?) returns one of the frame sequence generating objects. You can
pass any frame sequence generating object to another function, snd-ifft, and turn the sequence back into audio.

With snd-fft and snd-ifft, you can create all sorts of interesting processes. The main idea is to create intermediate
objects that both accept and generate sequences of frames. These objects can operate on the frames to implement the
desired spectral-domain processes. Examples of this can be found in the file nyquist/lib/fft/fft_tutorial.htm,
which is part of the standard Nyquist release. The documentation for snd-fft and snd-ifft follows.

snd-fft(sound, length, skip, window) [SAL]
(snd-fft sound length skip window) [LISP]

This function performs an FFT on the first samples in sound and returns a Lisp array of FLONUMs. The function
modifies the sound, violating the normal rule that sounds are immutable in Nyquist, so it is advised that you
copy the sound using snd-copy if there are any other references to sound. The length of the FFT is specified by
length, a FIXNUM (integer) which must be a power of 2. After each FFT, the sound is advanced by skip samples,
also of type FIXNUM. Overlapping FFTs, where skip is less than length, are allowed. If window is not NIL, it must
be a sound. The first length samples of window are multiplied by length samples of sound before performing
the FFT. When there are no more samples in sound to transform, this function returns NIL. The coefficients in
the returned array, in order, are the DC coefficient, the first real, the first imaginary, the second real, the second
imaginary, etc. The last array element corresponds to the real coefficient at the Nyquist frequency.

snd-ifft(time, srate, iterator, skip, window) [SAL]
(snd-ifft time srate iterator skip window) [LISP]

This function performs an IFFT on a sequence of spectral frames obtained from iterator and returns a sound. The
start time of the sound is given by time. Typically, this would be computed by calling (local-to-global 0).
The sample rate is given by srate. Typically, this would be *sound-srate*, but it might also depend upon the
sample rate of the sound from which the spectral frames were derived. To obtain each frame, the function sends

146

Nyquist Reference Manual Chapter 10. Time/Frequency Transformation

the message :next to the iterator object, using XLISP’s primitives for objects and message passing. The object
should return an array in the same format as obtained from snd-fft, and the object should return NIL when the
end of the sound is reached. After each frame is inverse transformed into the time domain, it is added to the
resulting sound. Each successive frame is added with a sample offset specified by skip relative to the previous
frame. This must be an integer greater than zero and less than the frame (FFT) size. If window is not NIL, it
must be a sound. This window signal is multiplied by the inverse transformed frame before the frame is added to
the output sound. The length of each frame should be the same power of 2. The length is implied by the first
array returned by iterator, so it does not appear as a parameter. This length is also the number of samples used
from window. Extra samples are ignored, and window is padded with zeros if necessary, so be sure window is
the right length. The resulting sound is computed on demand as with other Nyquist sounds, so :next messages
are sent to iterator only when new frames are needed. One should be careful not to reuse or modify iterator once
it is passed to snd-ifft.

10.1 Spectral Processing

There are a number of functions defined to make spectral processing easier in XLISP and SAL. The general approach,
as described above, is to create an iterator object that returns spectral frames. To avoid using the XLISP object system
directly, a more functional interface is defined, especially for SAL users. The sa-init function creates an iterator, and
sa-next retrieves spectral frames. Various functions are also provided to transform these into amplitude (magnitude)
spectra, plot them and perform other operations.

Some examples that use these spectral processing functions can be found in the Nyquist extension “fftsal” (use the
NyquistIDE’s Window : Nyquist Extensions menu item to download it; it will then be in your nyquist/lib/fftsal
directory. You can find descriptions of the examples in nyquist/lib/fftsal/spectral-process.lsp and
nyquist/lib/fftsal/spectral-process.sal.

sa-init(resolution: hz, fft-dur: dur, skip-period: skip, window: window-type, input:
input) [SAL]
(sa-init :resolution hz :fft-dur dur :skip-period skip :window window-type :input input)
[LISP]

Creates a spectral-analysis object that can be used to obtain spectral data from a sound. All keyword parameters
are optional except input. The resolution keyword parameter gives the width of each spectral bin in Hz. It
may be nil or not specified, in which case the resolution is computed from fft-dur. The actual resolution
may be finer than the specified resolution because fft sizes are rounded to a power of 2. The fft-dur is the
width of the FFT window in seconds. The actual FFT size will be rounded up to the nearest power of two in
samples. If nil, fft-dur will be calculated from resolution. If both fft-size and resolution are nil or
not specified, the default value is 1024 samples, corresponding to a duration of 1024 / signal-sample-rate. If
both resolution and fft-dur are specified, the resolution parameter will be ignored. Note that fft-dur
and resolution are reciprocals. The skip-period specifies the time interval in seconds between successive
spectra (FFT windows). Overlapping FFTs are possible. The default value overlaps windows by 50%. Non-
overlapped and widely spaced windows that ignore samples by skipping over them entirely are also acceptable.
The window specifies the type of window. The default is raised cosine (Hann or "Hanning") window. Options
include :hann, :hanning, :hamming, :none or nil, where :none and nil mean a rectangular window. The
input can be a string (which specifies a sound file to read) or a Nyquist SOUND to be analyzed. The return value
is an XLISP object that can be called to obtain parameters as well as a sequence of spectral frames. Normally,
you will set a variable to this result and pass the variable to sa-next, described below.

v 3.24 147

Nyquist Reference Manual Chapter 10. Time/Frequency Transformation

sa-info(sa-obj) [SAL]
(sa-info sa-obj) [LISP]

Prints information about an sa-obj, which was created by sa-init (see above). The return value is nil, but
information is printed.

sa-next(sa-obj) [SAL]
(sa-next sa-obj) [LISP]

Fetches the next spectrum from sa-obj, which was created by sa-init (see above). The return value is an array
of FLONUMs representing the discrete complex spectrum.

sa-magnitude(frame) [SAL]
(sa-magnitude frame) [LISP]

Computes the magnitude (amplitude) spectrum from a frame returned by sa-frame. The ith bin is stored at
index i. The size of the array is the FFT size / 2 + 1.

sa-normalize(frame [, max]) [SAL]
(sa-normalize frame [max]) [LISP]

Normalize a copy of frame, a magnitude (amplitude) spectrum returned by sa-magnitude. If max (a FLONUM)
is provided, the spectrum will be normalized to have a maximum value of max, which defaults to 1.

sa-plot(sa-obj, frame) [SAL]
(sa-plot sa-obj frame) [LISP]

Plots a magnitude (amplitude) spectrum from frame returned by sa-magnitude. The sa-obj parameter should
be the same value used to obtain the frame.

sa-print(file, sa-obj, frame, cutoff: cutoff, threshold: threshold) [SAL]
(sa-print sa-obj file frame :cutoff cutoff :threshold threshold) [LISP]

Prints an ASCII plot of frame, a magnitude (amplitude) spectrum returned by sa-magnitude (or
sa-normalize). The file is either a file opened for writing or T to print to the console. The caller is responsible
for closing the file (eventually). The sa-obj parameter should be the same value used to obtain the frame. If
cutoff, a FLONUM, is provided, only the spectrum below cutoff (Hz) will be printed. If threshold, a FLONUM,
is provided, the output may elide bins with values below the threshold.

sa-get-bin-width(sa-obj) [SAL]
(sa-get-bin-width sa-obj) [LISP]

Returns the width of a frequency bin as a FLONUM in Hz (also the separation of bin center frequencies). The
center frequency of the ith bin is i * bin-width.

sa-get-fft-size(sa-obj) [SAL]
(sa-get-fft-size sa-obj) [LISP]

Returns a FIXNUM, the size of the FFT, a power of 2.

sa-get-fft-dur(sa-obj) [SAL]
(sa-get-fft-dur sa-obj) [LISP]

Returns a FIXNUM, the duration of the FFT window.

sa-get-fft-window(sa-obj) [SAL]
(sa-get-fft-window sa-obj) [LISP]

Returns a symbol representing the type of window used, :hann, :hamming or :none.

sa-get-skip-period(sa-obj) [SAL]
(sa-get-skip-period sa-obj) [LISP]

Returns the skip size in seconds (a FLONUM).

sa-get-fft-skip-size(sa-obj) [SAL]
(sa-get-fft-skip-size sa-obj) [LISP]

Returns the skip size in samples (a FIXNUM).

v 3.24 148

Nyquist Reference Manual Chapter 10. Time/Frequency Transformation

sa-get-sample-rate(sa-obj) [SAL]
(sa-get-sample-rate sa-obj) [LISP]

Returns the sample rate of the sound being analyzed (a FLONUM) in Hz.

v 3.24 149

11 MIDI, Adagio, and Sequences

Nyquist includes facilities to read and write MIDI files as well as an ASCII text-based score representation language,
Adagio. XLISP and Nyquist can be used to generate MIDI files using compositional algorithms. (See also Section 14.)
A tutorial on using the Adadio representation and MIDI can be found in nyquist/lib/midi/midi_tutorial.htm.
The Adagio language is described below. Adagio was originally developed as part of the CMU MIDI Toolkit, which
included a program to record and play MIDI using the Adagio representation. Some of the MIDI features of Adagio
may not be useful within Nyquist.

Nyquist offers a number of different score representations, and you may find this confusing. In general, MIDI files
are a common way to exchange music performance data, especially with sequencers and score notation systems. The
nyquist/lib/midi/midi_tutorial.htm examples show how to get the most precise control when generating MIDI
data. Adagio is most useful as a text-based score entry language, and it is certainly more compact than Lisp expressions
for MIDI-like data. The Xmusic library (Chapter 14) is best for algorithmic generation of music and score manipulation.
There are functions to convert between the Adagio, MIDI sequence data, and Xmusic score representations.

11.1 The SEQ Type

Nyquist has a special data type to store MIDI data called a SEQ (short for "sequence"). You can create an empty SEQ
object, read data into it from a MIDI or Adagio file, write a SEQ as MIDI or Adagio, and insert notes into a SEQ
object. You can also convert SEQ objects into sound by providing functions to handle different MIDI messages. Further
discussion and examples can be found in lib/midi/midi_tutorial.htm.

seq-create() [SAL]
(seq-create) [LISP]

Creates a SEQ data object.

seq-read(seq, file) [SAL]
(seq-read seq file) [LISP]

Reads into a SEQ data object from an ASCII text file in Adagio format. The first parameter is the SEQ object to
read. The file is a file opened for reading. It must be closed after seq-read returns.

seq-read-smf(seq, midi-file) [SAL]
(seq-read seq midi-file) [LISP]

Reads into a SEQ data object from a Standard MIDI File. The first parameter is the SEQ object to read. The
midi-file is a binary file opened in binary mode for reading. It must be closed after seq-read-smf returns.

150

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

seq-write(seq, file, absolute) [SAL]
(seq-write seq file absolute) [LISP]

Writes a SEQ data object to an ASCII text file in Adagio format. The first parameter is the SEQ object to write.
The file is a file opened for writing. It must be closed after seq-read returns. The absolute parameter should be
true to write absolute times of events and false (NIL) to write relative times.

seq-write-smf(seq, midi-file) [SAL]
(seq-write-smf seq midi-file) [LISP]

Writes a SEQ data object to a binary file in Standard MIDI File format. The first parameter is the SEQ object to
write. The midi-file is a binary file opened for writing. The file is closed by seq-write-smf.

seq-insert-note(seq, time, line, chan, pitch, dur, loud [SAL]
(seq-insert_note seq time line chan pitch dur loud) [LISP]

Inserts a new note into the SEQ object seq. The note will be at time (a FIXNUM in milliseconds), with chan
(MIDI channel) given by a FIXNUM starting at 0, duration given by dur (a FIXNUM in milliseconds), pitch (a
FIXNUM with MIDI key number), and MIDI velocity given by loud, a FIXNUM from 1 to 127. The line field is
intended as a source code line number for Adagio files and can be any FIXNUM.

seq-insert-ctrl(seq, time, line, ctrltype, chan, ctrlnum, value [SAL]
(seq-insert-ctrl seq time line ctrltype chan ctrlnum value) [LISP]

Inserts a new control into the SEQ object seq. Here, “control” refers to a variety of MIDI messages, including
program change, pitch bend, and aftertouch in addition to control changes. The control will be at time (a
FIXNUM in milliseconds). The ctrltype (FIXNUM) uses MIDI status bytes for convenience: seq-ctrl-tag
(11) for a MIDI control change, seq-prgm-tag (12) for a MIDI program change, seq-cpress-tag (13) for a
MIDI channel pressure change, or seq-bend-tag (14) for a MIDI pitch bend change. The chan (MIDI channel)
is given by a FIXNUM starting at 0. If ctrltype is 11 (control change), then ctrlnum is the MIDI controller
number, otherwise this parameter is ignored. The value is the MIDI data value (FIXNUM from 0 to 127). In the
case of pitch bend, this value is a FIXNUM from 0 to 255 representing the upper 8 bits of the unsigned 14-bit
MIDI pitch bend value. (To convert from a scale of -1 to 1, use round(x * 127 + 128).) This gives about
10-cent resolution on pitch bends of plus or minus one octave, which is normally good enough, but should be
better. The line field is intended as a source code line number for Adagio files and can be any FIXNUM.

To read data from a sequence, you normally begin by making a shallow copy, but you can probably just call seq-reset
to initialize the iterator. Then call seq-get to get the current event, and seq-next to advance to the next event:

seq-copy(seq) [SAL]
(seq-copy seq) [LISP]

Returns a shallow copy of seq. Each copy of a sequence contains an independent iterator providing sequential
access to the events in the sequence.

seq-reset(seq) [SAL]
(seq-reset seq) [LISP]

Reset the sequence iterator to the beginning of the sequence.

seq-get(seq) [SAL]
(seq-get seq) [LISP]

Get the current event in the sequence. The returned value is a list of FIXNUMs in the form (eventtype time line
chan value1 value2 dur) as follows:

• eventtype - The type of event: seq-done-tag (0) indicates end of sequence, seq-other-tag (1)
indicates the event is not supported in Nyquist, seq-note-tag (2) indicates the event is a note,
seq-ctrl-tag (11) indicates a MIDI control change, seq-prgm-tag (12) indicates a MIDI program

v 3.24 151

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

change, seq-cpress-tag (13) indicates a MIDI channel pressure change, and seq-bend-tag (14)
indicates a MIDI pitch bend change.

• seq-ctrl-tag (3) indicates the event is a MIDI control change

• time - Time of the event in milliseconds.

• line - The Adagio file line number for the event (may not be defined when data is imported from a MIDI
file or elsewhere.

• chan - The MIDI channel (zero-based).

• value1 - The note pitch or controller number, depending upon the event type, or zero for program change,
channel pressure or pitch bend. This value is zero-based, e.g. the first controller number is 0.

• value2 - The note velocity, program number, controller value, channel pressure, or pitch bend (see
seq-insert-ctrl above for details on pitch bend values.) Program numbers are zero based.

• dur - The duration in milliseconds for notes.

Functions to access events returned by seq-get are defined in runtime/seqfnint.lsp.

seq-next(seq) [SAL]
(seq-next seq) [LISP]

Advance the sequence iterator to the next event in the sequence unless the iterator is at the last (seq-done-tag)
event.

11.2 Adagio Score Language

Adagio is an easy-to-use, non-procedural notation for scores. In Adagio, text commands are used to specify each note.
If you are new to Adagio, you may want to glance at the examples in Section 11.5 starting on page 158 before reading
any further.

A note is described in Adagio by a set of attributes, and any attribute not specified is “inherited” from the previous line.
Attributes may appear in any order and must be separated by one or more blanks. An attribute may not contain any
blanks. The attributes are: time, pitch, loudness, voice number, duration, and articulation.

Adagio has been used to program a variety of hardware and software synthesizers, and the Adagio compiler can be easily
adapted to new environments. Although not originally intended for MIDI, Adagio works quite well as a representation
for MIDI scores. Adagio has been extended to allow MIDI controller data such as modulation wheels, pitch bend, and
volume, MIDI program commands to change timbre, and System Exclusive messages.

A note command in Adagio must be separated from other notes. Usually, notes are distinguished by writing each one
on a separate line. Notes can also be separated by using a comma or semicolon as will be described below.

Besides notes, there are several other types of commands:

1. An asterisk (*) in column one (or immediately after a comma, semicolon, or space) indicates that the rest of the
line is a comment. The line is ignored by Adagio, and is therefore a good way to insert text to be read by people.
Here are some examples:

* This is a comment.
T150 G4 * This is a comment too!
T150 G4 ;* So is this.

v 3.24 152

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

2. An empty command (a blank line, for example) is ignored as if it were a comment1.

3. An exclamation point (!) in column one (or immediately after a comma or semicolon) indicates a special
command. A special command does not generate a note. Special commands follow the “!” with no intervening
spaces and extend to the end of the line, for example:

!TEMPO 100

4. Control change commands are used to control parameters like pitch bend, modulation, and program (timbre).
Control change commands can be specified along with notes or by themselves. A command that specifies control
changes without specifying a pitch will not produce a note.

Adagio is insensitive to case, thus “A” is equivalent to “a”, and you can mix upper and lower case letters freely.

11.3 Specifying Attributes

A note is indicated by a set of attributes. Attributes are indicated by a string of characters with no intervening spaces
because spaces separate attributes. The attributes are described below.

The default unit of time is a centisecond (100th’s), but this can be changed to a millisecond (1000th’s) using the !MSEC
command and reset to centiseconds with !CSEC (see Section 11.6.1). In the descriptions below, the term “time unit”
will be used to mean whichever convention is currently in effect.

11.3.1 Time

The time attribute specifies when to start the note. A time is specified by a “T” followed by a number representing time
units or by a duration (durations are described below). Examples:

T150 ** 1.5 sec (or .15 sec)
TQ3 ** 3 quarter note's duration

If no time is specified, the default time is the sum of the time and duration attributes of the previous note. (But see
Section 11.3.4.) Time is measured relative to the time of the most recent Tempo or Rate command. (See the examples
in Section 11.5 for some clarification of this point.)

11.3.2 Pitch

The pitch attribute specifies what frequency to produce. Standard scale pitches are named by name, using S for sharp, F
for flat, and (optionally) N for natural. For example, C and CN represent the same pitch, as do FS and GF (F sharp and G
flat). Note that there are no bar lines, and accidentals to not carry forward to any other notes as in common practice
notation.

Octaves are specified by number. C4 is middle C, and B3 is a half step lower. F5 is the top line of the treble clef, etc.
(Adagio octave numbering follows the ISO standard, but note that this is not universal. In particular, Yamaha refers to
middle C as C3.) Accidentals can go before or after the octave number, so FS3 and F3S have the same meaning.

1To be consistent, a blank line ought to specify zero attributes and generate a note that inherits all of its attributes from the
previous one. Adagio is intentionally inconsistent in this respect.

v 3.24 153

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

An alternate notation for pitch is Pn, where n is an integer representing the pitch. Middle C (C4) is equivalent to P60,
CS4 is P61, etc.

If you do not specify an octave, Adagio will choose one for you. This is done by picking the octave that will make the
current pitch as close to the previous pitch as possible. In the case of augmented fourths or diminished fifths, there are
two equally good choices. Adagio chooses the lower octave.

11.3.3 Duration

Duration is specified by a letter indicating a number of beats, followed by one or several modifiers. The basic duration
codes are:

W (whole, 4 beats),
H (half, 2 beats),
Q (quarter, 1 beat),
I (eighth, 1/2 beat),
S (sixteenth, 1/4 beat),
% (thirtysecond, 1/8 beat), and
^ (sixtyfourth, 1/16 beat).

Note that E is a pitch, so eighth-notes use the duration code I. The default tempo is 100 beats per minute (see Section
11.3.10). These codes may be followed by a T (triplet), indicating a duration of 2/3 the normal. A dot (.) after a
duration code extends it by half to 3/2 the normal. An integer after a note multiplies its duration by the indicated value
(the result is still just one note). Finally, a slash followed by an integer divides the duration by the integer. Like all
attributes, duration attributes may not have embedded spaces. Examples:

Q 1 beat (quarter note)
QT 2/3 beat (quarter triplet)
W. 6 beats(dotted whole note)
ST6 1 beat (6 sixteenth triplets)
H5 10 beats(5 half notes)
Q3/7 3/7 beats

A duration may be noted by Un, where n is an integer indicating 100th’s of a second (or 1000th’s), see Section 11.6.1.
For example, U25 is twenty-five time units.

Durations may be combined using a plus sign:

Q+IT a quarter tied to an eighth triplet
Q/7+W+Q2/7 a 7th beat tied to a whole tied to 2/7th beat
Q+U10 a quarter plus 10 time units

v 3.24 154

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

11.3.4 Next Time

The time of the next command (the next command in the Adagio program text) is normally the time of the current note
command plus the duration of the current note. This can be overridden by a field consisting of the letter N followed by a
number indicating time units, or followed by a duration as described above. The next note will then start at the time of
the current note plus the duration specified after N. If the next note has an explicit time attribute (T), then the specified
time will override the one based on the previous note. Examples:

N0 start the next note at the same time as this one
N50 start the next note 0.5 seconds after this one
NQT start the next note 2/3 beat after the current one
NU10+Q start after 0.1 seconds plus a quarter

A comma has an effect similar to N0 and is explained in Section 11.6.2. Articulation effects such as staccato can be
produced using N, but it is more convenient to use the articulation attribute described in Section 11.3.6.

11.3.5 Rest

Rests are obtained by including the field R in a note command. The effect of an R field is to omit the note that would
otherwise occur as the result of the current note command. In all other respects, the command is processed just like any
other line. This means that attributes such as duration, loudness, and pitch can be specified, and anything specified will
be inherited by the note in the next command. Normally, a rest will include just R and a duration. The fact that a note
command specifies a rest is not inherited. For example:

R H a half (two beat) rest
RH illegal, R must be separated from H by space(s)

Because some synthesizers (e.g. a DX7) cannot change programs (presets) rapidly, it may be desirable to change
programs in a rest so that the synthesizer will be ready to play by the end of the rest. See Section 11.3.9 for an example.

11.3.6 Articulation

Articulation in Adagio refers to the percentage of time a note is on relative to the indicated duration. For example, to
play a note staccato, you would normally play the note about half of its indicated duration. In Adagio, articulation is
indicated by # followed by an integer number indicating a percentage. The articulation attribute does not affect the time
of the next command. This example plays two staccato quarter notes:

C Q #50
D

To produce overlapping notes, the articulation may be greater than 100.

Be aware that overlapping notes on the same pitch can be a problem for some synthesizers. The following example
illustrates this potential problem:

!TEMPO 60
C Q #160 * starts at time 0, ends at 1.6 sec
D I * starts at time 1, ends at 1.8 sec
C Q * starts at time 1.5, ends at 3.1 sec?

v 3.24 155

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

At one beat per second (tempo 60), these three notes will start at times 0, 1, and 1.5 seconds, respectively. Since these
notes have an articulation of 160, each will be on 160% of its nominal duration, so the first note (C) will remain on until
1.6 seconds. But the third note (another C) will start at time 1.5 seconds. Thus, the second C will be started before the
first one ends. Depending on the synthesizer, this may cancel the first C or play a second C in unison. In either case, a
note-off message will be sent at time 1.6 seconds. If this cancels the second C, its actual duration will be 0.1 rather than
1.6 seconds as intended. A final note-off will be sent at time 3.1 seconds.

11.3.7 Loudness

Loudness is indicated by an L followed by a dynamic marking from the following: PPP, PP, P, MP, MF, F, FF, FFF.
Alternatively, a number from 1 to 127 may be used. The loudness attribute is the MIDI note velocity. (Note that a MIDI
velocity of 0 means “note-off,” so the minimum loudness is 1.) The dynamic markings are translated into numbers as
follows:

Lppp 20 Lmf 58
Lpp 26 Lf 75
Lp 34 Lff 98
Lmp 44 Lfff 127

11.3.8 Voice

The voice attribute tells which of the 16 MIDI channels to use for the note. The voice attribute consists of a V followed
by an integer from 1 (the default) to 16.

There is a limit to how many notes can be played at the same time on a given voice (MIDI channel). Since the limit
depends upon the synthesizer, Adagio cannot tell you when you exceed the limit. Similarly, Adagio cannot tell whether
your synthesizer is set up to respond to a given channel, so there is no guarantee that what you write will actually be
heard.

11.3.9 Timbre (MIDI Program)

A MIDI program (synthesizer preset) can be selected using the attribute Zn, where n is the program number (from 1 to
128). Notice that in MIDI, changing the program on a given channel will affect all notes on that channel and possibly
others. Adagio treats MIDI program changes as a form of control change.

For many synthesizers, you will not be able to change programs at the start of a note or during a note. Change the
program during a rest instead. For example:

R I Z23 V4 ** change MIDI channel 4 to program 23 during rest
A4 ** play a note on channel 4

Check how your synthesizer interprets program numbers. For example, the cartridge programs on a DX7 can be
accessed by adding 32 to the cartridge program number. Cartridge program number 10 is specified by Z42.

As in MIDI, the Adagio timbre is a property of the voice (MIDI channel), so the timbre will not be inherited by notes
on a different channel; to change the timbre on multiple voices (channels), you must explicitly notate each change.

v 3.24 156

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

11.3.10 Tempo

The length of a beat may be changed using a Tempo command:

!TEMPO n

where n indicates beats per minute. The exclamation mark tells Adagio that this is a special command line rather than a
note definition. A special command takes the place of a note specification. No other attributes should be written on a
line with a special command. The !TEMPO command is associated with a time, computed as if the !TEMPO command
were a note. The time attribute (T) of all succeeding notes is now measured relative to the time of the !TEMPO command.
The new tempo starts at the !TEMPO command time and affects all succeeding notes. Durations specified in time
units (for example U58, N15) are not affected by the !TEMPO command, and numerical times (for example T851) are
computed relative to the time of the last !TEMPO command.

The !TEMPO command is fairly clever about default durations. If the last duration specified before the !TEMPO command
is symbolic (using one of ˆ, %, S, I, Q, H, or W), then the default duration for the node after the !TEMPO command will
be modified according to the tempo change. Consider the following tempo change:

!TEMPO 60
A4 H
!TEMPO 120
G

In this example, the first note will last 2 seconds (2 beats at 60 beats per minute). The second note inherits the duration
(H) from the first note, but at 120 beats per minute, the second note will last only 1 second. If the duration had been
specified U200 (also a duration of 2 seconds), the second note would also last 2 seconds because the !TEMPO command
does not affect times or durations specified numerically in time units. If the duration is the sum of a symbolic and a
numeric specification, the inherited duration after a !TEMPO command is undefined.

11.3.11 Rate

The !RATE command scales all times including those specified in hundredths of seconds. A rate of 100 means no
change, 200 means twice as fast, and 50 means half as fast. For example, to make a piece play 10% faster, you can add
the following command at the beginning of the score:

!RATE 110

!RATE and !TEMPO commands combine, so
!RATE 200
!TEMPO 70

will play 70 beats per minute at double the normal speed, or 140 beats per minute. Like !TEMPO, the time of the !RATE
command is added to the time attribute of all following notes up to the next !TEMPO or !RATE command.

Two !RATE commands do not combine, so a !RATE command only affects the rate until the next !RATE command.

Although !TEMPO and !RATE can occur in the middle of a note (using N, T, etc.) they do not affect a note already
specified. This property allows multiple tempi to exist simultaneously (see Section 11.6.4).

v 3.24 157

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

11.4 Default Attributes

If an attribute is omitted, the previous one is used by default (with the exception of the time attribute). The default
values for the first note, which are inherited by succeeding notes until something else is specified, are given below in
Adagio notation:

Time T0
Pitch C4
Duration Q
Articulation #100
Loudness LFFF
Voice V1
Tempo !TEMPO 100
Rate !RATE 100

Control changes (including timbre or MIDI program, specified by Z) have no default value and are only sent as specified
in the score.

Important: the rules for determining when a command will play a note are as follows (and this has changed slightly
from previous versions):

1. If a special (!) command or nothing is specified, e.g. a blank line, do not play a note.

2. If R (for “rest”) is specified, do not play a note.

3. Otherwise, if a pitch is specified, do play a note.

4. Otherwise, if no control changes (or program changes) are specified (so this is a command with non-pitch
attributes and no control changes), do play a note.

Another way to say this is “Special commands and commands with rests (R) do not play notes. Otherwise, play a note if
a pitch is specified or if no control is specified.”

11.5 Examples

The following plays the first two bars of “Happy Birthday”. Note that Adagio knows nothing of bar lines, so the fact
that the first note occurs on beat 3 or that the meter is three-four is of no consequence:

*Example 1 ** Happy Birthday tune (C major)
!TEMPO 120
G4 I. LF
G4 S
A4 Q
G4
C5
B4 H

v 3.24 158

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

The time attribute for the first note is zero (0). The second note will occur a dotted eighth later, etc. Notice that no
timbre or rate was specified. Adagio will provide reasonable default values of 1 and 100, respectively.

The following example plays the first four bars of an exercise from Bartok’s Mikrokosmos (Vol. 1, No. 12). An extra
quarter note is inserted at the beginning of each voice in order to allow time to change MIDI programs. The right hand
part is played on voice (MIDI channel) 1 and the left hand part on voice 2. Notice the specification of the time attribute
to indicate that voice 2 starts at time 0. Also, default octaves are used to reduce typing.

*Example 2 ** Bartok
*voice 1, right hand
R Q Z10 V1 ** extra rest for program change
A4 H
B Q
C
D H
C
D Q
C
B
A
B
C
D
R

*voice 2, left hand
T0 R Q Z15 V2 ** extra rest for program change
G3 H
F Q
E
D H
E
D Q
E
F
G
F
E
D
R

v 3.24 159

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

The next example is the same piece expressed in a different manner, illustrating the interaction between the !TEMPO
command and the time attribute. Recall that the time attribute is measured relative to the time of the last !TEMPO
command:

*Example 3 ** 4 measures in 2 sections
!Tempo 100
*Voice 1, Measures 1 & 2
R Q Z10 V1
A4 H
B Q
C
D H
C

*Voice 2, Measures 1 & 2
T0 R Q Z15 V2
G3 H
F Q
E
D H
E H

!TEMPO 100
*Voice 1, Measures 3 & 4
* note that Z10 is still in effect for V1
V1 D4 Q
C
B
A
B
C
D
R

*Voice 2, Measures 3 & 4
T0 V2 D3 Q
E
F
G
F
E
D
R

The piece is written in 4 sections. The first plays a rest followed by two measures, starting at time 0. The next section
changes the time back to zero and plays two measures of the left hand part (voice 2). The next command (!TEMPO
100) sets the tempo to 100 (it already is) and sets the reference time to be two measures into the piece. Therefore, the
next note (D4) will begin measure 3. The D3 that begins the last group of notes has a T0 attribute, so it will also start at
measure 3. Notice how the !TEMPO command can serve to divide a piece into sections.

The last example will show yet another way to express the same piece of music using the “Next” attribute. Only the first
bar of music is given.

v 3.24 160

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

*Example 4 ** use of the Next attribute
!Tempo 100
R Q Z10 V1 N0
R Q Z15 V2

A4 H V1 N0
G3 V2

B4 Q V1 N0
F3 V2

C4 Q V1 N0
E3 V2

Here, each pair of lines represents two simultaneous notes. The N0 attribute forces the second line to start at the same
time as the first line of each pair. Because of the large intervals, octave numbers (3 and 4) are necessary to override the
default octave for these pitches.

11.6 Advanced Features

Beyond the simple notation described above, Adagio supports a number of features. (See also the next chapter.)

11.6.1 Time Units and Resolution

The default time unit is 10ms (ten milliseconds or one centisecond or 100th of a second), but it is possible to change the
basic unit to 1ms, or 1000th of a second. The time unit can be specified by:

!CSEC centisecond time units = 100th

!MSEC millisecond time units = 1000th

The time unit remains in effect until the next !CSEC or !MSEC command.

11.6.2 Multiple Notes Per Line

Notes can be separated by commas or semicolons as well as by starting a new line. A comma is equivalent to typing N0
and starting a new line. In other words, the next note after a comma will start at the same time as the note before the
comma. In general, use commas to separate the notes of a chord.

A semicolon is equivalent to starting a new line. In general, use semicolons to group notes in a melody. Here is yet
another rendition of the Bartok:

v 3.24 161

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

*Example 5 ** use of semicolons
!Tempo 100
R Q Z10 V1
A4 H; B Q; C; D H; C; D Q; C; B; A; B; C; D; R

T0 R Q Z15 V2
G3 H; F Q; E; D H; E; D Q; E; F; G; F; E; D; R

This example is similar to Example 2, except semicolons are used. Note how semicolons make the two lines of music
stand out. The next example is similar to Example 4, except commas are used and four bars are notated. The music
below is treated as a sequence of 2-note chords, with each chord on a separate line:

*Example 6 ** use of commas
!Tempo 100
R Q Z10 V1, R Q Z15 V2
A4 H V1, G3 V2
B4 Q V1, F3 V2
C4 V1, E3 V2
D4 H V1, D3 V2
C4 V1, E3 V2
D4 Q V1, D3 V2
C4 V1, E3 V2
B4 V1, F3 V2
A4 V1, G3 V2
B4 V1, F3 V2
C4 V1, E3 V2
D4 V1, D3 V2
R

11.6.3 Control Change Commands

Any control change can be specified using the syntax “~n (v)”, where n is the controller number (0 - 127), and v is the
value. In addition, Adagio has some special syntax for some of the commonly used control changes (note that Pitch
bend, Aftertouch, and MIDI Program Change are technically not MIDI control changes but have their own special
message format and status bytes):

K Portamento switch
M Modulation wheel
O Aftertouch
X Volume
Y Pitch Bend
Z Program Change

The letter listed beside each control function is the Adagio command letter. For example, M23 is the command for
setting the modulation wheel to 23. Except for pitch bend, the portamento switch, and MIDI Program Change, all
values range from 0 to 127. Pitch bend is “off” or centered at 128, and has a range from 0 to 255 (MIDI allows for more
precision, but Adagio does not). Turn on portamento with K127 and off with K0. Programs are numbered 1 to 128 to
correspond to synthesizer displays.

v 3.24 162

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

About volume: Midi volume is just a control, and the Midi standard does not say what it means. Typically it does what
the volume pedal does; that is, it scales the amplitude in a continuously changeable fashion. In contrast, Midi velocity,
which is controlled by the L (loudness) attribute, is part of a Midi note-on command and is fixed for the duration of
the note. Typically, these two ways of controlling loudness and amplitude operate independently. In some low-cost
synthesizers the numbers seem to be added together internally and volume changes are ignored after the note starts.

About pitch bend: Midi pitch bend is a number from 0 to 16383, where 8192 is the center position. To convert to Midi,
Adagio simply multiplies your number by 64, giving values from 0 to 16320. Note that Y128 translates exactly to 8192.
The meaning of pitch bend depends upon your synthesizer and its setting. Most synthesizers let you specify a “pitch
bend range.” A range of one semitone means that Y255 will produce a bend of approximately one semitone up, and Y0
will bend one semitone down. If the range is 12 semitones, then the same Y255 will bend an octave. Typically, pitch
bend is exponential, so each increment in the pitch bend value will bend an equal number of cents in pitch.

Control changes can be part of a note specification or independent. In the following example, a middle C is played with
a modulation wheel setting of 50 and a pitch bend of 120. Then, at 10 unit intervals, the pitch bend is decreased by 10.
The last line sets the portamento time (controller 5) to 80:

*Example 7
C4 LMF M50 Y120 U100 N10
Y110 N10; Y100 N10; Y90 N10; Y80 N10
Y70 N10; Y60 N10; Y50 N10
~5(80)

See Section 11.4 on page 158 for rules on whether or not a command will play a note.

11.6.4 Multiple Tempi

Writing a piece with multiple tempi requires no new commands; you just have to be clever in the use of Tempo and
Time. The following plays a 7 note diatonic scale on voice 1, and a 12 note chromatic scale on voice 2:

*Example 8 ** multiple tempi
!TEMPO 70
V1 C4; D; E; F; G; A; B
T0 R N0

!TEMPO 120
V2 C4; CS; D; DS; E; F; FS; G; GS; A; AS; B

!TEMPO 100
V1 C5, V2 C5

The third line plays the 7-note diatonic scale on voice 1. The next line contains the tricky part: notice that the time is
set back to zero, there is a rest, and a next (N) attribute is used to specify that the next default time will be at the same
time as the current one. This is tricky because a !TEMPO command cannot have a time (T0) attribute, and a T0 by itself
would create a note with a duration. T0 R N0 says: “go to time 0, do not play a note, and do not advance the time
before the next command”. Thus, the time of the !TEMPO 120 command is zero. After the 12 note scale, the tempo is
changed to 100 and a final note is played on each voice. A little arithmetic will show that 7 notes at tempo 70 and 12
notes at tempo 120 each take 6 seconds, so the final notes (C5) of each scale will happen at the same time.

v 3.24 163

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

11.6.5 MIDI Synchronization

The Adagio program (but not Nyquist) can synchronize with external devices using MIDI real time messages. Thus,
Adagio has a !CLOCK command. This command is currently of no use to Nyquist users but is documented here for
completeness (it’s part of the language syntax even if it does not do anything).

Since Adagio supports multiple tempi, and Midi clock is based on beats, it is necessary to be explicit in the score about
where the clock should start and what is the duration of a quarter note. The !CLOCK command in Adagio turns on a 24
pulse-per-quarter (PPQ) clock at the current tempo and time:

!TEMPO 100
!CLOCK

A !CLOCK command must also be inserted for each tempo change that is to be reflected in the Midi clock. Typically,
each !TEMPO command will be followed by a !CLOCK command.

Clock commands and thus tempo changes can take place at arbitrary times. It is assumed that tempo changes on an
exact 24th of a beat subdivision (for example, exactly on a beat). If not, the tempo change will take place on the nearest
exact 24th of a beat subdivision. This may be earlier or later than the requested time.

11.6.6 System Exclusive Messages

Adagio has a definition facility that makes it possible to send system exclusive parameters. Often, there are parameters
on Midi synthesizers that can only be controlled by system exclusive messages. Examples include the FM ratio and
LFO rate on a DX7 synthesizer. The following example defines a macro for the DX7 LFO rate and then shows how the
macro is used to set the LFO rate for a B-flat whole note in the score. The macro definition is given in hexadecimal,
except v is replaced by the channel (voice) and %1 is replaced by the first parameter. A macro is invoked by writing “~”
followed by the macro name and a list of parameters:

!DEF LFO F0 43 0v 01 09 %1 F7
Bf5 W ~LFO(25)

In general, the !DEF command can define any single MIDI message including a system exclusive message. The
message must be complete (including the status byte), and each !DEF must correspond to just one message. The symbol
following !DEF can be any name consisting of alphanumeric characters. Following the name is a hexadecimal string
(with optional spaces), all on one line. Embedded in the string may be the following special characters:

v
Insert the 4-bit voice (MIDI channel) number. If v occurs in the place of a high-order hexadecimal digit, replace
v with 0v so that the channel number is always placed in the low-order 4 bits of a data byte. In other words, v is
padded if necessary to fall into the low-order bits.

%n
Insert a data byte with the low-order 7 bits of parameter number n. Parameters are numbered 1 through 9. If the
parameter value is greater than 127, the high-order bits are discarded.

ˆn
Insert a data byte with bits 7 through 13 of parameter number n. In other words, shift the value right 7 places
then clear all but the first 7 bits. Note that 14-bit numbers can be encoded by referencing the same parameter
twice; for example, %4ˆ4 will insert the low-order followed by the high-order parts of parameter 4 into two
successive data bytes.

v 3.24 164

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

Parameters are separated by commas, but there may be no spaces. The maximum number of parameters allowed is
9. Here is an example of definitions to send a full-resolution pitch bend command and to send a system exclusive
command to change a DX7 parameter2.

* Define macro for pitch bend commands:
!DEF bend Ev %1 ˆ1

A ~bend(8192) ** 8192 is "pitch bend off"

* Change the LFO SPEED:
* SYSEX = F0, Yamaha = 43, Substatus/Channel = 1v,
* Group# = 01, Parameter# = 9, Data = 0-99, EOX = F7
!DEF lfospeed F0 43 1v 01 09 %1 F7

* now use the definitions:
G4 ~bend(7567) N40
~lfospeed(30) N35

11.6.7 Control Ramps

The !RAMP command can specify a smooth control change from one value to another. It consists of a specification of
the starting and ending values of some control change, a duration specifying how often to send a new value, and a
duration specifying the total length of the ramp.

!RAMP X10 X100 Q W2
!RAMP ~23(10) ~23(50) U20 W
!RAMP ~lfo(15) ~lfo(35) U10

The first line says to ramp the volume control (controller number 7) from 10 to 100, changing at each quarter note for
the duration of two whole notes. The second line says to ramp controller number 23 from value 10 to value 50, sending
a new control change message every 20 time units. The overall duration of the ramp should be equivalent to a whole
note (W). As shown in the third line, even system exclusive messages controlled by parameters can be specified. If the
system exclusive message has more than one parameter, only one parameter may be “ramped”; the others must remain
the same. For example, the following would ramp the second parameter:

!RAMP ~mysysex(4,23,75) ~mysysex(4,100,75) U10 W

A rather curious and extreme use of macros and ramps is illustrated in the following example. The noteon macro starts
a note, and noteoff ends it. Ramps can now be used to emit a series of notes with changing pitches or velocities. Since
Adagio has no idea that these macros are turning on notes, it is up to the programmer to turn them off!

2My TX816 Owner’s Manual gives an incorrect format for the change parameter sysex command (according to the manual, there
is no data in the message!) I am assuming that the data should be the last byte before the EOX and that there is no byte count. If you
are reading this, assume that I have not tested this guess, nor have I tested this example.

v 3.24 165

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

!DEF noteon 9v %1 %2
!DEF noteoff 8v %1 %2
~noteon(48,125)
~noteoff(48,126)
* turn on some notes
!RAMP ~noteon(36,125) ~noteon(60,125) Q W NW
* turn them off
!RAMP ~noteoff(60,50) ~noteoff(36,50) Q W NW

11.6.8 The !End Command

The special command !END marks the end of a score. Everything beyond that is ignored, for example:

* this is a score
C; D; E; F; G W
!END
since the score has ended, this text will be ignored

11.6.9 Calling C Routines

It is possible to call C routines from within Adagio scores when using specially linked versions, but this feature is
disabled in Nyquist. The syntax is described here for completeness.

The !CALL command calls a C routine that can in turn invoke a complex sequence of operations. Below is a call to a
trill routine, which is a standard routine in Adagio. The parameters are the base pitch of the trill, the total duration of
the trill, the interval in semitones, the duration of each note of the trill, and the loudness. Notice that both numbers and
Adagio notation can be used as parameters:

!CALL trill(A5,W,2,S,Lmf) T278 V1

The parameter list should have no spaces, and parameters are separated by commas. Following the close parenthesis,
you may specify other attributes such as the starting time and voice as shown in the example above.

A parameter may be an Adagio pitch specification, an Adagio duration, an Adagio loudness, a number, or an ASCII
character within single quotes, e.g. ’a’ is equivalent to 97 because 97 is the decimal encoding of “a” in ASCII.

The !CALL may be followed by a limited set of attributes. These are time (T), voice (V), and next time (N). The !CALL
is made at the current time if no time is specified, and the time of the next adagio command is the time of the !CALL
unless a next time is specified. In other words, the default is N0.

11.6.10 Setting C Variables

In addition to calling C routines, there is another way in which scores can communicate with C. As with !CALL, specific
C code must be linked before these commands can be used, and this is not supported in Nyquist. The !SETI command
sets an integer variable to a value, and the !SETV command sets an element of an integer array. For example, the next
line sets the variable delay to 200 and sets transposition[5] to -4 at time 200:

!SETI delay 200
!SETV transposition 5 -4 T200

v 3.24 166

Nyquist Reference Manual Chapter 11. MIDI, Adagio, and Sequences

As with the !CALL command, these commands perform their operations at particular times according to their place in
the Adagio score. This makes it very easy to implement time-varying parameters that control various aspects of an
interactive music system.

v 3.24 167

12 Linear Prediction Analysis and Synthesis

Nyquist provides functions to perform Linear Prediction Coding (LPC) analysis and synthesis. In simple terms, LPC
analysis assumes that a sound is the result of an all-pole filter applied to a source with a flat spectrum. LPC is good for
characterizing the general spectral shape of a signal, which may be time-varying as in speech sounds. For synthesis, any
source can be filtered, allowing the general spectral shape of one signal (used in analysis) to be applied to any source
(used in synthesis). A popular effect is to give vowel-like spectra to musical tones, creating an artificial (or sometimes
natural) singing voice.

Examples of LPC analysis and synthesis can be found in the file nyquist/lib/lpc/lpc_tutorial.html, which is
part of the standard Nyquist release.

As with FFT processing, LPC analysis takes a sound as input and returns a stream of frames. Frames are returned from
an object using the :next selector just as with FFT frames. An LPC frame is a list consisting of: RMS1, the energy of
the input signal, RMS2, the energy of the residual signal, ERR, the square root of RMS1/RMS2, and FILTER-COEFS,
an array of filter coefficients. To make code more readable and to avoid code dependence on the exact format of a
frame, the functions lpc-frame-rms1, lpc-frame-rms2, lpc-frame-err, and lpc-frame-filter-coefs can be
applied to a frame to obtain the respective fields.

The z transform of the filter is H(z) = 1/A(z), where A(z) is a polynomial of the form A(z) = 1 + a1z-1 + a2z-2 + ... +
apz-p. The FILTER-COEFS array has the form #(ap ap-1 ... a3 a2 a1).

The file lpc.lsp defines some useful classes and functions. The file is not automatically loaded with Nyquist, so you
must execute (load "lpc") before using them.

12.1 LPC Classes and Functions

make-lpanal-iterator(sound, framedur, skiptime, npoles) [SAL]
(make-lpanal-iterator sound framedur skiptime npoles) [LISP]

Makes an iterator object, an instance of lpanal-class, that returns LPC frames from successive frames of
samples in sound. The duration (in seconds) of each frame is given by framedur, a FLONUM. The skip size (in
seconds) between successive frames is given by skiptime, a FLONUM. Typical values for framedur and skiptime
are 0.08 and 0.04, giving 25 frames per second and a 50% frame overlap. The number of poles is given by npoles,
a FIXNUM. The result is an object that responds to the :next selector by returning a frame as described above.
NIL is returned when sound terminates. (Note that one or more of the last analysis windows may be padded
with zeros. NIL is only returned when the corresponding window would begin after the termination time of the
sound.)

168

Nyquist Reference Manual Chapter 12. Linear Prediction Analysis and Synthesis

make-lpc-file-iterator(filename) [SAL]
(make-lpc-file-iterator filename) [LISP]

Another way to get LPC frames is to read them from a file. This function opens an ASCII file containing LPC
frames and creates an iterator object, an instance of class lpc-file-class to access them. Create a file using
save-lpc-file (see below).

save-lpc-file(lpc-iterator, filename) [SAL]
(save-lpc-file lpc-iterator filename) [LISP]

Create a file containing LPC frames. This file can be read by make-lpc-file-iterator (see above).

show-lpc-data(lpc-iterator, iniframe, endframe [, poles?]) [SAL]
(show-lpc-data lpc-iterator iniframe endframe [poles?]) [LISP]

Print values of LPC frames from an LPC iterator object. The object is lpc-iterator, which is typically an instance
of lpanal-class or lpc-file-class. Frames are numbered from zero, and only files starting at iniframe (a
FIXNUM) and ending before endframe (also a FIXNUM) are printed. By default, only the values for RMS1, RMS2,
and ERR are printed, but if optional parameter poles? is non-NIL, then the LPC coefficients are also printed.

allpoles-from-lpc(snd, lpc-frame) [SAL]
(allpoles-from-lpc snd lpc-frame) [LISP]

A single LPC frame defines a filter. Use allpoles-from-lpc to apply this filter to snd, a SOUND. To obtain
lpc-frame, a LIST containing an LPC frame, either send :next to an LPC iterator, or use nth-frame (see
below). The result is a SOUND whose duration is the same as that of snd.

nth-frame(lpc-iterator, numframe) [SAL]
(nth-frame lpc-iterator numframe) [LISP]

Get the nth frame from an lpc iterator by skipping n frames and getting the next one. Typical use is to construct a
filter using the nth frame from an LPC data file using something like this to filter snd: allpoles-from-lpc(snd,
nth-frame(make-lpc-file-iterator(filename), n)).

lpreson(snd, lpc-iterator, skiptime) [SAL]
(lpreson snd lpc-iterator skiptime) [LISP]

Implements a time-varying all-pole filter controlled by a sequence of LPC frames from an iterator. The SOUND
to be filtered is snd, and the source of LPC frames is lpc-iterator, typically an instance of lpanal-class or
lpc-file-class. The frame period (in seconds) is given by skiptime (a FLONUM). This number does not have
to agree with the skiptime used to analyze the frames. (Greater values will cause the filter evolution slow down,
and smaller values will cause it to speed up.) The result is a SOUND. The duration of the result is the minimum of
the duration of snd and that of the sequence of frames.

lpc-frame-rms1(frame) [SAL]
(lpc-frame-rms1 frame) [LISP]

Get the energy of the input signal from a frame.

lpc-frame-rms2(frame) [SAL]
(lpc-frame-rms2 frame) [LISP]

Get the energy of the residual from a frame.

lpc-frame-err(frame) [SAL]
(lpc-frame-err frame) [LISP]

Get the square root of RMS1/RMS2 from a frame.

lpc-frame-filter-coefs(frame) [SAL]
(lpc-frame-filter-coefs frame) [LISP]

Get the filter coefficients from a frame.

v 3.24 169

Nyquist Reference Manual Chapter 12. Linear Prediction Analysis and Synthesis

12.2 Low-level LPC Functions

The lowest-level Nyquist functions for LPC are

• snd-lpanal for analysis,

• snd-allpoles, an all-pole filter with fixed coefficients, and

• snd-lpreson, an all-pole filter that takes frames from an LPC iterator.

snd-lpanal(samps, npoles) [SAL]
(snd-lpanal samps npoles) [LISP]

Compute an LPC frame with npoles (a FIXNUM) poles from an ARRAY of samples (FLONUMS). Note that
snd-fetch-array can be used to fetch a sequence of frames from a sound. Ordinarily, you should not
use this function. Use make-lpanal-iterator instead.

snd-allpoles(snd, lpc-coefs, gain) [SAL]
(snd-allpoles snd lpc-coefs gain) [LISP]

A fixed all-pole filter. The input is snd, a SOUND. The filter coefficients are given by lpc-coefs (an ARRAY), and
the filter gain is given by gain, a FLONUM. The result is a SOUND whose duration matches that of snd. Ordinarily,
you should use allpoles-from-lpc instead (see above).

snd-lpreson(snd, lpc-iterator, skiptime) [SAL]
(snd-lpreson snd lpc-iterator skiptime) [LISP]

This function is identical to lpreson (see above).

v 3.24 170

13 Developing and Debugging in Nyquist

There are a number of tools, functions, and techniques that can help to debug Nyquist programs. Since these are
described in many places throughout this manual, this chapter brings together many suggestions and techniques for
developing code and debugging. You really should read this chapter before you spend too much time with Nyquist.
Many problems that you will certainly run into are addressed here.

13.1 Debugging

Probably the most important debugging tool is the backtrace. There are two kinds of backtrace: one for SAL, and one
for Lisp.

SAL mode is actually just an XLISP function (sal) that reads input and evaluates it. When SAL encounters an error, it
normally prints a trace of the SAL stack (all the active functions written in SAL), exists the current command, and
reads the next command.

If you call XLISP functions from SAL, including most Nyquist sound processing functions, and an error occurs within
these XLISP functions, you will only see the SAL function that called the XLISP functions listed in the stack trace.
Sometimes you need more details.

When Nyquist encounters an error when it is not running SAL, it normally suspends execution and prints an error
message. To find out where in the program the error occurred and how you got there, start by typing (bt). This will
print out the last several function calls and their arguments, which is usually sufficient to see what is going on.

In order for (bt) to work, you must have a couple of global variables set: *tracenable* is ordinarily set to NIL. If it
is true, then a backtrace is automatically printed when an error occurs; *breakenable* must be set to T, as it enables
the execution to be suspended when an error is encountered. If *breakenable* is NIL (false), then execution stops
when an error occurs but the stack is not saved and you cannot get a backtrace. Finally, bt is just a macro to save typing.
The actual backtrace function is baktrace, which takes an integer argument telling how many levels to print. All of
these things are set up by default when you start Nyquist.

To get this XLISP backtrace behavior when SAL encounters an error, you need to have *breakenable* set while SAL
is running. The best way to do this is to run within the NyquistIDE program, open the Preferences dialog, and choose
the desired settings, e.g. “Enable XLISP break on SAL error.”

Since Nyquist sounds are executed with a lazy evaluation scheme, some errors are encountered when samples are being
generated. In this case, it may not be clear which expression is in error. Sometimes, it is best to explore a function or
set of functions by examining intermediate results. Any expression that yields a sound can be assigned to a variable
and examined using one or more of: s-plot, snd-print-tree, and of course play. The snd-print-tree function

171

Nyquist Reference Manual Chapter 13. Developing and Debugging in Nyquist

prints a lot of detail about the inner representaion of the sound. Keep in mind that if you assign a sound to a global
variable and then look at the samples (e.g. with play or s-plot), the samples will be retained in memory. At 4 bytes
per sample, a big sound may use all of your memory and cause a crash.

Another technique is to use low sample rates so that it is easier to plot results or look at samples directly. The calls:

set-sound-srate(100)
set-control-srate(100)

set the default sample rates to 100, which is too slow for audio, but useful for examining programs and results. The
function

snd-samples(sound , limit)

will convert up to limit samples from sound into a Lisp array. This is another way to look at results in detail.

The trace function is sometimes useful. It prints the name of a function and its arguments everytimg the function is
called, and the result is printed when the function exits. To trace the osc function, type:

trace(osc)

and to stop tracing, type untrace(osc).

If a variable needs a value or a function is undefined, and if *breakenable* was set, you will get a prompt where you
can fix the error (by setting the variable or loading the function definition) and keep going. At the debug (or break)
prompt, your input must be in XLISP, not SAL syntax. Use (co), short for (continue) to reevaluate the variable or
function and continue execution.

When you finish debugging a particular call, you can “pop” up to the top level by typing (top), a short name for
(top-level). There is a button named "Top" in the NyquistIDE that takes you back to the top level (ready to accept
XLISP expressions), and another button named "SAL" that puts you back in SAL mode.

13.2 Useful Functions

grindef(name) [SAL]
(grindef name) [LISP]

Prints a formatted listing of a lisp function. This is often useful to quickly inspect a function without searching
for it in source files. Do not forget to quote the name, e.g. (grindef ’prod).

args(name) [SAL]
(args name) [LISP]

Similar to grindef, this function prints the arguments to a function. This may be faster than looking up a
function in the documentation if you just need a reminder. For example, (args ’lp) prints “(LP S C),” which
may help you to remember that the arguments are a sound (S) followed by the cutoff (C) frequency.

The following functions are useful short-cuts that might have been included in XLISP. They are so useful that they are
defined as part of Nyquist.

incf(symbol) [SAL]
(incf symbol) [LISP]

Increment symbol by one. This is a macro, and symbol can be anything that can be set by setf. Typically,
symbol is a variable: “(incf i),” but symbol can also be an array element: “(incf (aref myarray i)).”

v 3.24 172

Nyquist Reference Manual Chapter 13. Developing and Debugging in Nyquist

decf(symbol) [SAL]
(decf symbol) [LISP]

Decrement symbol by one. (See incf, above.)

push(val, lis) [SAL]
(push val lis) [LISP]

Push val onto lis (a Lisp list). This is a macro that is equivalent to writing (in Lisp) (setf lis (cons val
lis)).

pop(lis) [SAL]
(pop lis) [LISP]

Remove (pop) the first item from lis (a Lisp list). This is a macro that is equivalent to writing (in Lisp) (setf
lis (cdr lis)). Note that the remaining list is returned, not the head of the list that has been popped.
Retrieve the head of the list (i.e. the top of the stack) using first or, equivalently, car.

The following macros are useful control constructs.

while(test, expr1, expr2, ...) [SAL]
(while test expr1 expr2 ...) [LISP]

A conventional “while” loop. If test is true, evaluate expressions (expr1, expr2, etc.) and repeat. If test is false,
return. This expression evaluates to NIL unless the expression (return expr) is evaluated, in which case the
value of expr is returned. In SAL, the loop statement is preferred.

when(test, action) [SAL]
(when test action) [LISP]

A conventional “if-then” statement. If test is true, action is evaluated and returned. Otherwise, NIL is returned.
(Use if or cond to implement “if-then-else” and more complex conditional forms.

It is often necessary to load a file only if it has not already been loaded. For example, the pianosyn library loads
somewhat slowly, so if some other file already loaded it, it would be good to avoid loading it again. How can you
load a file once? Nyquist does not keep track of files that are loaded, but you must be loading a file to define some
function, so the idea is to tell Nyquist "I require function from file"; if the function does not yet exist, Nyquist satisfies
the requirement by loading the file.

require-from(fnsymbol, filename [, path]) [SAL]
(require-from fnsymbol filename [path]) [LISP]

Tests whether fnsymbol, an unquoted function name, is defined. If not, filename, a STRING, is loaded. Normally
fnsymbol is a function that will be called from within the current file, and filename is the file that defines fnsymbol.
The path, if a STRING, is prepended to filename. If path is t (true), then the directory of the current file is used
as the path.

Sometimes it is important to load files relative to the current file. For example, the lib/piano.lsp library loads data
files from the lib/piano directory, but how can we find out the full path of lib? The solution is:

current-path() [SAL]
(current-path) [LISP]

Returns the full path name of the file that is currently being loaded (see load). Returns NIL if no file is being
loaded.

Finally, there are some helpful math functions:

v 3.24 173

Nyquist Reference Manual Chapter 13. Developing and Debugging in Nyquist

real-random(from, to) [SAL]
(real-random from to) [LISP]

Returns a random FLONUM between from and to. (See also rrandom, which is equivalent to (real-random 0
1)).

power(x, y) [SAL]
(power x y) [LISP]

Returns x raised to the y power.

v 3.24 174

14 Xmusic and Algorithmic Composition

Several Nyquist libraries offer support for algorithmic composition. Xmusic is a library for generating sequences and
patterns of data. Included in Xmusic are:

• pattern objects, used to generate interesting sequences of parameter values,

• random number generators, used to create random sequences from different distributions (contained in the
distributions.lsp library)

• a standard representation for "note lists" called scores and functions to render them as sounds,

• the score-gen macro which helps to generate scores from patterns,

• score manipulation functions to select, transform, shift, and perform other operations on scores.

14.1 Xmusic Basics

Xmusic is inspired by and based on Common Music by Rick Taube. Common Music supports MIDI and various other
synthesis languages and includes a graphical interface, some visualization tools, and many other features. Common
Music runs in Common Lisp and Scheme, but not XLISP (the base language for Nyquist).

The Xmusic libraries in Nyquist offer an interesting subset of the tools in Common Music. One important feature of
Xmusic is that it is integrated with all of the Nyquist synthesis functions, so you can use Xmusic patterns and scores to
control fine details of sound synthesis.

14.2 Xmusic Patterns

Xmusic patterns are objects that generate data streams. For example, the cycle-class of objects generate cyclical
patterns such as "1 2 3 1 2 3 1 2 3 ...", or "1 2 3 4 3 2 1 2 3 4 ...". Patterns can be used to specify pitch sequences,
rhythm, loudness, and other parameters.

Xmusic functions are automatically loaded when you start Nyquist. To use a pattern object, you first create the pattern,
e.g.

set pitch-source = make-cycle(list(c4, d4, e4, f4))

175

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

In this example, pitch-source is an object of class cycle-class which inherits from pattern-class.

Because SAL is not an object-oriented language, these classes and their methods are not directly accessible from SAL.
Instead, Xmusic defines a functional interface, e.g. make-cycle creates an instance of cycle-class, and the next
function, introduced below, retrieves the next value from any instance of pattern-class. Using LISP syntax, you can
have full access to the methods of all objects (see the source code in xm.lsp, but the functional interface described here
should be sufficient and it is recommended that you limit your access to this interface.

After creating the pattern, you can access it repeatedly with next to generate data, e.g.

play seqrep(i, 13, pluck(next(pitch-source), 0.2))

This will create a sequence of notes with the following pitches: c, d, e, f, c, d, e, f, c, d, e, f, c. If you evaluate this again,
the pitch sequence will continue, starting on "d".

It is very important not to confuse the creation of a sequence with its access. Consider this example:

play seqrep(i, 13,
pluck(next(make-cycle(list(c4, d4, e4, f4))), 0.2))

This looks very much like the previous example, but it only repeats notes on middle-C. The reason is that every time
pluck is evaluated, make-cycle is called and creates a new pattern object. After the first item of the pattern is extracted
with next, the cycle is not used again, and no other items are generated.

To summarize this important point, there are two steps to using a pattern. First, the pattern is created and stored in a
variable. Second, the pattern is accessed (multiple times) using next.

next(pattern-object [, #t]) [SAL]
(next pattern-object [t]) [LISP]

Returns the next element from a pattern generator object. If the optional second argument is true (default value
is false), then an entire period is returned as a list.

14.2.1 Nested Patterns

Patterns can be nested, that is, you can write patterns of patterns. In general, the next function does not return patterns.
Instead, if the next item in a pattern is a (nested) pattern, next recursively gets the next item of the nested pattern.

While you might expect that each call to next would advance the top-level pattern to the next item, and descend
recursively if necessary to the inner-most nesting level, this is not how next works. Instead, next remembers the last
top-level item, and if it was a pattern, next continues to generate items from that same inner pattern until the end of the
inner pattern’s period is reached. The next paragraph explains the concept of the period.

14.2.2 Periods

The data returned by a pattern object is structured into logical groups called periods. You can get an entire period (as a
list) by calling next(pattern, t). For example:

set pitch-source = make-cycle(list(c4, d4, e4, f4))
print next(pitch-source, t)

v 3.24 176

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

This prints the list (60 62 64 65), which is one period of the cycle.

You can also get explicit markers that delineate periods by calling send(pattern, :next). In this case, the value
returned is either the next item of the pattern, or the symbol +eop+ if the end of a period has been reached. What
determines a period? This is up to the specific pattern class, so see the documentation for specifics. You can override
the “natural” period using the keyword for:, e.g.

set pitch-source = make-cycle(list(c4, d4, e4, f4), for: 3)
print next(pitch-source, t)
print next(pitch-source, t)

This prints the lists (60 62 64) (60 62 64). Notice that the cycle starts from the beginning after only 3 items and
the fourth is never reached in this case. The for: parameter could itself be a pattern, in which case the a new cycle
length would be computed at the beginning of every cycle.

A variation on this restructures the stream of items into groups of 3:

set pitch-source = make-length(make-cycle(list(c4, d4, e4 f4)), 3)
print next(pitch-source, t)
print next(pitch-source, t)

This prints the lists (60 62 64) (65 60 62). Note that in this case the cycle pattern is producing default cycles of
length 4 because there is no for: specification, and these are regrouped by the length pattern.

Nested patterns are probably easier to understand by example than by specification. Here is a simple nested pattern of
cycles:

set cycle-1 = make-cycle({a b c})
set cycle-2 = make-cycle({x y z})
set cycle-3 = make-cycle(list(cycle-1, cycle-2))
loop repeat 9 exec format(t, "~A ", next(cycle-3)) end

This will print "A B C X Y Z A B C". Notice that the inner-most cycles cycle-1 and cycle-2 generate a period of
items before the top-level cycle-3 advances to the next pattern.

14.2.3 General Parameters for Creating Pattern objects

Before describing specific pattern classes, there are several optional parameters that apply in the creating of any pattern
object. These are:

for:
The length of a period. This overrides the default by providing a numerical length. The value of this optional
parameter may be a pattern that generates a sequence of integers that determine the length of each successive
period. A period length may not be negative, but it may be zero.

name:
A pattern object may be given a name. This is useful if the trace: option is used.

trace:
If non-null, this optional parameter causes information about the pattern to be printed each time an item is
generated from the pattern.

The built-in pattern classes are described in the following section.

v 3.24 177

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

14.2.4 cycle

The cycle-class iterates repeatedly through a list of items. For example, two periods of make-cycle({a b c})
would be (A B C) (A B C).

make-cycle(items, for: for, name: name, trace: trace) [SAL]
(make-cycle items :for for :name name :trace trace) [LISP]

Make a cycle pattern that iterates over items. The default period length is the length of items. (See above for
a description of the optional parameters.) The list is replaced and restarted every period of the cycle, which
defaults to the whole list, but may be specified by the for: keyword. If items is a pattern, a new period of
items becomes the list from which items are generated for each cycle pattern. Note that the items list may be
truncated by the use of for:. Different groupings and repetitions can be obtained by nesting make-cycle within
make-length and/or make-copier patterns.

14.2.5 line

The line-class is similar to the cycle class, but when it reaches the end of the list of items, it simply repeats the last
item in the list. For example, two periods of make-line({a b c}) would be (A B C) (C C C).

make-line(items, for: for, name: name, trace: trace) [SAL]
(make-line items :for for :name name :trace trace) [LISP]

Make a line pattern that iterates over items. The default period length is the length of items. As with make-cycle,
items may be a pattern. (See above for a description of the optional parameters.)

14.2.6 random

The random-class generates items at random from a list. The default selection is uniform random with replacement,
but items may be further specified with a weight, a minimum repetition count, and a maximum repetition count. Weights
give the relative probability of the selection of the item (with a default weight of one). The minimum count specifies
how many times an item, once selected at random, will be repeated. The maximum count specifies the maximum
number of times an item can be selected in a row. If an item has been generated n times in succession, and the maximum
is equal to n, then the item is disqualified in the next random selection. Weights (but not currently minima and maxima)
can be patterns. The patterns (thus the weights) are recomputed every period.

make-random(items, for: for, name: name, trace: trace) [SAL]
(make-random items :for for :name name :trace trace) [LISP]

Make a random pattern that selects from items. Any (or all) element(s) of items may be lists of the following
form: (value :weight weight :min mincount :max maxcount), where value is the item (or pattern)
to be generated, weight is the (optional) relative probability of selecting this item, mincount is the (optional)
minimum number of repetitions when this item is selected, and maxcount is the (optional) maximum number of
repetitions allowed before selecting some other item. The default period length is the length of items. If items is
a pattern, a period from that pattern becomes the list from which random selections are made, and a new list is
generated every period.

v 3.24 178

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

14.2.7 palindrome

The palindrome-class repeatedly traverses a list forwards and then backwards. For example, two periods of
make-palindrome({a b c}) would be (A B C C B A) (A B C C B A). The elide: keyword parameter con-
trols whether the first and/or last elements are repeated:

make-palindrome({a b c}, elide: nil)
;; generates A B C C B A A B C C B A ...

make-palindrome({a b c}, elide: t)
;; generates A B C B A B C B ...

make-palindrome({a b c}, elide: :first)
;; generates A B C C B A B C C B ...

make-palindrome({a b c}, elide: :last)
;; generates A B C B A A B C B A ...

make-palindrome(items, elide: elide, for: for, name: name, trace: trace) [SAL]
(make-palindrome items :elide elide :for for :name name :trace trace) [LISP]

Generate items from list alternating in-order and reverse-order sequencing. The keyword parameter elide can
have the values :first, :last, t, or nil to control repetition of the first and last elements. The elide parameter
can also be a pattern, in which case it is evaluated every period. One period is one complete forward and
backward traversal of the list. If items is a pattern, a period from that pattern becomes the list from which random
selections are made, and a new list is generated every period.

14.2.8 heap

The heap-class selects items in random order from a list without replacement, which means that all items are
generated once before any item is repeated. For example, two periods of make-heap({a b c}) might be (C A B)
(B A C). Normally, repetitions can occur even if all list elements are distinct. This happens when the last element of a
period is chosen first in the next period. To avoid repetitions, the max: keyword argument can be set to 1. The max:
keyword only controls repetitions from the end of one period to the beginning of the next. If the list contains more than
one copy of the same value, it may be repeated within a period regardless of the value of max:.

make-heap(items, for: for, max: max, name: name, trace: trace) [SAL]
(make-heap items :for for :max max :name name :trace trace) [LISP]

Generate items randomly from list without replacement. If max is 1, the first element of a new period will not be
the same as the last element of the previous period, avoiding repetition. The default value of max is 2, meaning
repetition is allowed. The period length is the length of items. If items is a pattern, a period from that pattern
becomes the list from which random selections are made, and a new list is generated every period.

v 3.24 179

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

14.2.9 accumulation

The accumulation-class takes a list of values and returns the first, followed by the first two, followed by the first
three, etc. In other words, for each list item, return all items from the first through the item. For example, if the list is (A
B C), each generated period is (A A B A B C).

make-accumulation(items, name: name, trace: trace) [SAL]
(make-accumulation items :name name :trace trace) [LISP]

Return the prefixes of items, e.g. the first element followed by the first and second elements, then the first three,
until the entire list is returned. The period length is (n2 + n) / 2 where n is the length of items. If items is a
pattern, a period from that pattern becomes the list from which items are generated, and a new list is generated
every period. Note that this is similar in name but different from make-accumulate.

14.2.10 copier

The copier-classmakes copies of periods from a sub-pattern. For example, three periods of make-copier(make-length(make-cycle({a
b c}), 1), repeat: 2, merge: t) would be (A A) (B B) (C C). Note that entire periods (not individual
items) are repeated, so in this example, make-length is used to re-group the cycle into periods of length one so that
each item is repeated by the repeat: count.

make-copier(sub-pattern, repeat: repeat, merge: merge, for: for,
name: name, trace: trace) [SAL]

(make-copier sub-pattern :repeat repeat :merge merge :for for
:name name :trace trace) [LISP]

Generate a period from sub-pattern and repeat it repeat times. If merge is false (the default), each repetition of
a period from sub-pattern results in a period by default. If merge is true (non-null), then all repeat repetitions
of the period are merged into one result period by default. If the for: keyword is used, the same items are
generated, but the items are grouped into periods determined by the for: parameter. If the for: parameter is
a pattern, it is evaluated every result period. The repeat and merge values may be patterns that return a repeat
count and a boolean value, respectively. If so, these patterns are evaluated initially and after each repeat copies
are made (independent of the for: keyword parameter, if any). The repeat value returned by a pattern can also
be negative. A negative number indicates how many periods of sub-pattern to skip. After skipping these patterns,
new repeat and merge values are generated.

14.2.11 accumulate

The accumulate-class forms the sum of numbers returned by another pattern. For example, each period of
make-accumulate(make-cycle({1 2 -3})) is (1 3 0). The default output period length is the length of the input
period.

v 3.24 180

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

make-accumulate(sub-pattern, for: for, max: maximum, min: minimum,
name: name, trace: trace) [SAL]

(make-accumulate sub-pattern :for for :max maximum :min minimum
:name name :trace trace) [LISP]

Keep a running sum of numbers generated by sub-pattern. The default period lengths match the period lengths
from sub-pattern. If maximum (a pattern or a number) is specified, and the running sum exceeds maximum, the
running sum is reset to maximum. If minimum (a pattern or a number) is specified, and the running sum falls
below minimum, the running sum is reset to minimum. If minimum is greater than maximum, the running sum
will be set to one of the two values. Minimum and maximum patterns are reevaluated every cycle. Note that this
is similar in name but not in function to make-accumulation.

14.2.12 sum

The sum-class forms the sum of numbers, one from each of two other patterns. For example, each period of
make-sum(make-cycle({1 2 3}), make-cycle({4 5 6})) is (5 7 9). The default output period length is the
length of the input period of the first argument. Therefore, the first argument must be a pattern, but the second argument
can be a pattern or a number.

make-sum(x, y, for: for, name: name, trace: trace) [SAL]
(make-sum x y :for for :name name :trace trace) [LISP]

Form sums of items (which must be numbers) from pattern x and pattern or number y. The default period lengths
match the period lengths from x.

14.2.13 product

The product-class forms the product of numbers, one from each of two other patterns. For example, each period
of make-product(make-cycle({1 2 3}), make-cycle({4 5 6})) is (4 10 18). The default output period
length is the length of the input period of the first argument. Therefore, the first argument must be a pattern, but the
second argument can be a pattern or a number.

make-product(x, y, for: for, name: name, trace: trace) [SAL]
(make-product x y :for for :name name :trace trace) [LISP]

Form products of items (which must be numbers) from pattern x and pattern or number y. The default period
lengths match the period lengths from x.

14.2.14 eval

The eval-class evaluates an expression to produce each output item. The default output period length is 1 if the
expression is an expression; otherwise, the expression must be a pattern that returns expressions to be evaluated, and the
output periods match the periods of the expression pattern.

v 3.24 181

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

make-eval(expr, for: for, name: name, trace: trace) [SAL]
(make-eval expr :for for :name name :trace trace) [LISP]

Evaluate expr to generate each item. If expr is a pattern, each item is generated by getting the next item from
expr and evaluating it. Note that expr is evaluated as a Lisp expression, which is a list consisting of the function
name followed by parameter expressions (which may also be lists). In the simplest case (recommended), create a
SAL function with no parameters that performs the computation. For example, to create a pattern in SAL that
calls the parameterless function rrandom, write make-eval({rrandom}). In SAL, {rrandom} creates a list
with the (unevaluated) symbol rrandom, equivalent to list(quote(rrandom)).

14.2.15 length

The length-class generates periods of a specified length from another pattern. This is similar to using the for:
keyword, but for many patterns, the for: parameter alters the points at which other patterns are generated. For example,
if the palindrome pattern has an elide: pattern parameter, the value will be computed every period. If there is also
a for: parameter with a value of 2, then elide: will be recomputed every 2 items. In contrast, if the palindrome
(without a for: parameter) is embedded in a length pattern with a lenght of 2, then the periods will all be of length 2,
but the items will come from default periods of the palindrome, and therefore the elide: values will be recomputed at
the beginnings of default palindrome periods.

make-length(pattern, length-pattern, name: name, trace: trace) [SAL]
(make-length pattern length-pattern :name name :trace trace) [LISP]

Make a pattern of class length-class that regroups items generated by a pattern according to pattern lengths
given by length-pattern. Note that length-pattern is not optional: There is no default pattern length and no for:
keyword.

14.2.16 window

The window-class groups items from another pattern by using a sliding window. If the skip value is 1, each output
period is formed by dropping the first item of the previous perioda and appending the next item from the pattern. The
skip value and the output period length can change every period. For a simple example, if the period length is 3 and the
skip value is 1, and the input pattern generates the sequence A, B, C, ..., then the output periods will be (A B C), (B C
D), (C D E), (D E F),

make-window(pattern, length-pattern, skip-pattern, name: name, trace: trace) [SAL]
(make-window pattern length-pattern skip-pattern :name name :trace trace) [LISP]

Make a pattern of class window-class that regroups items generated by a pattern according to pattern lengths
given by length-pattern and where the period advances by the number of items given by skip-pattern. Note that
length-pattern is not optional: There is no default pattern length and no for: keyword.

v 3.24 182

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

14.2.17 markov

The markov-class generates items from a Markov model. A Markov model generates a sequence of states according
to rules which specify possible future states given the most recent states in the past. For example, states might be
pitches, and each pitch might lead to a choice of pitches for the next state. In the markov-class, states can be either
symbols or numbers, but not arbitrary values or patterns. This makes it easier to specify rules. However, symbols can be
mapped to arbitrary values including pattern objects, and these become the actual generated items. By default, all future
states are weighted equally, but weights may be associated with future states. A Markov model must be initialized
with a sequence of past states using the past: keyword. The most common form of Markov model is a "first order
Markov model" in which the future item depends only upon one past item. However, higher order models where the
future items depend on two or more past items are possible. A "zero-order" Markov model, which depends on no past
states, is essentially equivalent to the random pattern. As an example of a first-order Markov pattern, two periods of
make-markov({{a -> b c} {b -> c} {c -> a}}, past: {a}) might be (C A C) (A B C).

make-markov(rules, past: past, produces: produces, for: for, name: name, trace: trace)
[SAL]
(make-markov rules past :produces produces :for for :name name :trace trace) [LISP]

Generate a sequence of items from a Markov process. The rules parameter is a list of rules where each rule
has the form: (prev1 prev2 ... prevn -> next1 next2 ... nextn) where prev1 through prevn
represent a sequence of most recent (past) states. The symbol * is treated specially: it matches any previous state.
If prev1 through prevn (which may be just one state as in the example above) match the previously generated
states, this rule applies. Note that every rule must specify the same number of previous states; this number is
known as the order of the Markov model. The first rule in rules that applies is used to select the next state. If
no rule applies, the next state is NIL (which is a valid state that can be used in rules). Assuming a rule applies,
the list of possible next states is specified by next1 through nextn. Notice that these are alternative choices for
the next state, not a sequence of future states, and each rule can have any number of choices. Each choice
may be the state itself (a symbol or a number), or the choice may be a list consisting of the state and a weight.
The weight may be given by a pattern, in which case the next item of the pattern is obtained every time the
rule is applied. For example, this rules says that if the previous states were A and B, the next state can be
A with a weight of 0.5 or C with an implied weight of 1: (A B -> (A 0.5) C). The default length of the
period is the length of rules. The past parameter must be provided. It is a list of states whose length matches
the order of the Markov model. The keyword parameter produces may be used to map from state symbols or
numbers to other values or patterns. The parameter is a list of alternating symbols and values. For example,
to map A to 69 and B to 71, use list(quote(a), 69, quote(b), 71). You can also map symbols to
patterns, for example list(quote(a), make-cycle({57 69}), quote(b), make-random({59 71})).
The next item of the pattern is is generated each time the Markov model generates the corresponding state.
Finally, the produces keyword can be :eval, which means to evaluate the Markov model state. This could be
useful if states are Nyquist global variables such as C4, CS4, D4,]..., which evaluate to numerical
values (60, 61, 62,

markov-create-rules(sequence, order [, generalize]) [SAL]
(markov-create-rules sequence order [generalize]) [LISP]

Generate a set of rules suitable for the make-markov function. The sequence is a “typical” sequence of states,
and order is the order of the Markov model. It is often the case that a sample sequence will not have a transition
from the last state to any other state, so the generated Markov model can reach a “dead end” where no rule
applies. This might lead to an infinite stream of NIL’s. To avoid this, the optional parameter generalize can be
set to t (true), indicating that there should be a fallback rule that matches any previous states and whose future
states are weighted according to their frequency in sequence. For example, if sequence contains 5 A’s, 5 B’s and

v 3.24 183

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.1: The Linear Distribution, g = 1.

10 G’s, the default rule will be (* -> (A 5) (B 5) (G 10)). This rule will be appended to the end so it will
only apply if no other rule does.

14.3 Random Number Generators

The distributions.lsp library implements random number generators that return random values with various
probability distributions. Without this library, you can generate random numbers with uniform distributions. In a
uniform distribution, all values are equally likely. To generate a random integer in some range, use random. To generate
a real number (FLONUM) in some range, use real-random (or rrandom if the range is 0-1). But there are other
interesting distributions. For example, the Gaussian distribution is often used to model real-world errors and fluctuations
where values are clustered around some central value and large deviations are more unlikely than small ones. See
Dennis Lorrain, "A Panoply of Stochastic ’Canons’," Computer Music Journal vol. 4, no. 1, 1980, pp. 53-81. Further
discussion and examples can be found in nyquist/demos/probability_distributions.htm.

In most of the random number generators described below, there are optional parameters to indicate a maximum
and/or minimum value. These can be used to truncate the distribution. For example, if you basically want a Gaussian
distribution, but you never want a value greater than 5, you can specify 5 as the maximum value. The upper and lower
bounds are implemented simply by drawing a random number from the full distribution repeatedly until a number
falling into the desired range is obtained. Therefore, if you select an acceptable range that is unlikely, it may take
Nyquist a long time to find each acceptable random number. The intended use of the upper and lower bounds is to weed
out values that are already fairly unlikely.

linear-dist(g) [SAL]
(linear-dist g) [LISP]

Return a FLONUM value from a linear distribution, where the probability of a value decreases linearly from zero
to g which must be greater than zero. (See Figure 14.1.) The linear distribution is useful for generating for
generating time and pitch intervals.

v 3.24 184

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.2: The Exponential Distribution, delta = 1.

exponential-dist(delta [, high]) [SAL]
(exponential-dist delta [high]) [LISP]

Return a FLONUM value from an exponential distribution. The initial downward slope is steeper with larger values
of delta, which must be greater than zero. (See Figure 14.2. The optional high parameter puts an artificial
upper bound on the return value. The exponential distribution generates values greater than 0, and can be
used to generate time intervals. Natural random intervals such as the time intervals between the release of
atomic particles or the passing of yellow volkswagons in traffic have exponential distributions. The exponential
distribution is memory-less: knowing that a random number from this distribution is greater than some value (e.g.
a note duration is at least 1 second) tells you nothing new about how soon the note will end. This is a continuous
distribution, but geometric-dist (described below) implements the discrete form.

gamma-dist(nu [, high]) [SAL]
(gamma-dist nu [high]) [LISP]

Return a FLONUM value from a Gamma distribution. The value is greater than zero, has a mean of nu (a FIXNUM
greater than zero), and a mode (peak) of around nu - 1. The optional high parameter puts an artificial upper
bound on the return value.

bilateral-exponential-dist(xmu, tau [, low, high]) [SAL]
(bilateral-exponential-dist xmu tau [low high]) [LISP]

Returns a FLONUM value from a bilateral exponential distribution, where xmu is the center of the double
exponential and tau controls the spread of the distribution. A larger tau gives a wider distribution (greater
variance), and tau must be greater than zero. The low and high parameters give optional artificial bounds on the
minimum and maximum output values, respectively. This distribution is similar to the exponential, except it
is centered at 0 and can output negative values as well. Like the exponential, it can be used to generate time
intervals; however, it might be necessary to add a lower bound so as not to compute a negative time interval.

cauchy-dist(tau [, low, high]) [SAL]
(cauchy-dist tau [low high]) [LISP]

Returns a FLONUM from the Cauchy distribution, a symmetric distribution with a high peak at zero and a width
(variance) that increases with parameter tau, which must be greater than zero. The low and high parameters give
optional artificial bounds on the minimum and maximum output values, respectively.

v 3.24 185

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.3: The Gamma Distribution, nu = 4.

Figure 14.4: The Bilateral Exponential Distribution.

v 3.24 186

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.5: The Cauchy Distribution, tau = 1.

Figure 14.6: The Hyperbolic Cosine Distribution.

hyperbolic-cosine-dist([low, high]) [SAL]
(hyperbolic-cosine-dist [low high]) [LISP]

Returns a FLONUM value from the hyperbolic cosine distribution, a symmetric distribution with its peak at zero.
The low and high parameters give optional artificial bounds on the minimum and maximum output values,
respectively.

logistic-dist(alpha, beta [, low, high]) [SAL]
(logistic-dist alpha beta [low high]) [LISP]

Returns a FLONUM value from the logistic distribution, which is symmetric about the mean. The alpha parameter
primarily affects dispersion (variance), with larger values resulting in values closer to the mean (less variance),
and the beta parameter primarily influences the mean. The low and high parameters give optional artificial
bounds on the minimum and maximum output values, respectively.

v 3.24 187

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.7: The Logistic Distribution, alpha = 1, beta = 2.

Figure 14.8: The Arc Sine Distribution.

arc-sine-dist() [SAL]
(arc-sine-dist) [LISP]

Returns a FLONUM value from the arc sine distribution, which outputs values between 0 and 1. It is symmetric
about the mean of 1/2, but is more likely to generate values closer to 0 and 1.

gaussian-dist(xmu, sigma [, low, high]) [SAL]
(gaussian-dist xmu sigma [low high]) [LISP]

Returns a FLONUM value from the Gaussian or Gauss-Laplace distribution, a linear function of the normal
distribution. It is symmetric about the mean of xmu, with a standard deviation of sigma, which must be greater
than zero. The low and high parameters give optional artificial bounds on the minimum and maximum output
values, respectively.

v 3.24 188

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.9: The Gauss-Laplace (Gaussian) Distribution, xmu = 0, sigma = 1.

Figure 14.10: The Beta Distribution, alpha = .5, beta = .25.

beta-dist(a, b) [SAL]
(beta-dist a b) [LISP]

Returns a FLONUM value from the Beta distribution. This distribution outputs values between 0 and 1, with
outputs more likely to be close to 0 or 1. The parameter a controls the height (probability) of the right side of the
distribution (at 1) and b controls the height of the left side (at 0). The distribution is symmetric about 1/2 when a
= b.

bernoulli-dist(px1 [, x1, x2]) [SAL]
(bernoulli-dist px1 [x1 x2]) [LISP]

Returns either x1 (default value is 1) with probability px1 or x2 (default value is 0) with probability 1 - px1. The
value of px1 should be between 0 and 1. By convention, a result of x1 is viewed as a success while x2 is viewed
as a failure.

v 3.24 189

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.11: The Bernoulli Distribution, px1 = .75.

binomial-dist(n, p) [SAL]
(binomial-dist n p) [LISP]

Returns a FIXNUM value from the binomial distribution, where n is the number of Bernoulli trials run (a FIXNUM)
and p is the probability of success in the Bernoulli trial (a FLONUM from 0 to 1). The mean is the product of n and
p.

geometric-dist(p) [SAL]
(geometric-dist p) [LISP]

Returns a FIXNUM value from the geometric distribution, which is defined as the number of failures before a
success is achieved in a Bernoulli trial with probability of success p (a FLONUM from 0 to 1).

poisson-dist(delta) [SAL]
(poisson-dist delta) [LISP]

Returns a FIXNUM value from the Poisson distribution with a mean of delta (a FIXNUM). The Poisson distribution
is often used to generate a sequence of time intervals, resulting in random but often pleasing rhythms.

v 3.24 190

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.12: The Binomial Distribution, n = 5, p = .5.

Figure 14.13: The Geometric Distribution, p = .4.

v 3.24 191

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

Figure 14.14: The Poisson Distribution, delta = 3.

14.4 Score Generation and Manipulation

A common application of pattern generators is to specify parameters for notes. (It should be understood that “notes” in
this context means any Nyquist behavior, whether it represents a conventional note, an abstract sound object, or even
some micro-sound event that is just a low-level component of a hierarchical sound organization. Similarly, “score”
should be taken to mean a specification for a sequence of these “notes.”) The score-gen macro (defined by loading
xm.lsp) establishes a convention for representing scores and for generating them using patterns.

The timed-seq macro, described in Section 7.4, already provides a way to represent a “score” as a list of expressions.
The Xmusic representation goes a bit further by specifying that all notes are specified by an alternation of keywords
and values, where some keywords have specific meanings and interpretations.

The basic idea of score-gen is you provide a template for notes in a score as a set of keywords and values. For
example,

set pitch-pattern = make-cycle(list(c4, d4, e4, f4))
score-gen(dur: 0.4, name: quote(my-sound),

pitch: next(pitch-pattern), score-len: 9)

generates a score of 9 notes as follows:

v 3.24 192

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

((0 0 (SCORE-BEGIN-END 0 3.6))
(0 0.4 (MY-SOUND :PITCH 60))
(0.4 0.4 (MY-SOUND :PITCH 62))
(0.8 0.4 (MY-SOUND :PITCH 64))
(1.2 0.4 (MY-SOUND :PITCH 65))
(1.6 0.4 (MY-SOUND :PITCH 60))
(2 0.4 (MY-SOUND :PITCH 62))
(2.4 0.4 (MY-SOUND :PITCH 64))
(2.8 0.4 (MY-SOUND :PITCH 65))
(3.2 0.4 (MY-SOUND :PITCH 60)))

The use of keywords like :PITCH helps to make scores readable and easy to process without specific knowledge of
about the functions called in the score. For example, one could write a transpose operation to transform all the :pitch
parameters in a score without having to know that pitch is the first parameter of pluck and the second parameter
of piano-note. Keyword parameters are also used to give flexibility to note specification with score-gen. Since
this approach requires the use of keywords, the next section is a brief explanation of how to define functions that use
keyword parameters.

14.4.1 Keyword Parameters

Keyword parameters are parameters whose presence is indicated by a special symbol, called a keyword, followed by the
actual parameter. Keyword parameters in SAL have default values that are used if no actual parameter is provided by
the caller of the function. (See Appendix C to learn about keywords in XLISP.)

To specify that a parameter is a keyword parameter, use a keyword symbol (one that ends in a colon) followed by a
default value. For example, here is a function that accepts keyword parameters and invokes the pluck function:

define function k-pluck(pitch: 60, dur: 1)
return pluck(pitch, dur)

Now, we can call k-pluck with keyword parameters. The keywords are simply the formal parameter names with a
prepended colon character (:pitch and :dur in this example), so a function call would look like:

k-pluck(pitch: c3, dur: 3)

Usually, it is best to give keyword parameters useful default values. That way, if a parameter such as dur: is missing,
a reasonable default value (1) can be used automatically. It is never an error to omit a keyword parameter, but the
called function can check to see if a keyword parameter was supplied or not. Because of default values, we can call
k-pluck(pitch: c3) with no duration, k-pluck(dur: 3) with only a duration, or even k-pluck() with no
parameters.

In XLISP, there is additional syntax to specify an alternate symbol to be used as the keyword and to allow the called
function to determine whether or not a keyword parameter was supplied, but these features are little-used. See the
XLISP manual for details.

14.4.2 Using score-gen

The score-gen macro computes a score based on keyword parameters. Some keywords have a special meaning, while
others are not interpreted but merely placed in the score. The resulting score can be synthesized using timed-seq (see
Section 7.4).

v 3.24 193

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

The form of a call to score-gen is simply:

score-gen(k1: e1, k2: e2, ...) [SAL]
(score-gen :k1 e1 :k2 e2 ...) [LISP]

where the k’s are keywords and the e’s are expressions. A score is generated by evaluating the expressions once
for each note and constructing a list of keyword-value pairs. A number of keywords have special interpretations.
The rules for interpreting these parameters will be explained through a set of questions and answers below.

How many notes will be generated? The keyword parameter score-len: specifies an upper bound on the number
of notes. (Note: in LISP syntax, keywords are always preceded by colons, so you would write :score-len instead.)
The keyword score-dur: specifies an upper bound on the starting time of the last note in the score. (To be more
precise, the score-dur: bound is reached when the default starting time of the next note is greater than or equal to the
score-dur: value. This definition is necessary because note times are not strictly increasing.) When either bound
is reached, score generation ends. At least one of these two parameters must be specified or an error is raised. These
keyword parameters are evaluated just once and are not copied into the parameter lists of generated notes.

What is the duration of generated notes? The keyword dur: defaults to 1 and specifies the nominal duration in seconds.
Since the generated note list is compatible with timed-seq, the starting time and duration (to be precise, the stretch
factor) are not passed as parameters to the notes. Instead, they control the Nyquist environment in which the note will
be evaluated.

What is the start time of a note? The default start time of the first note is zero. Given a note, the default start time of the
next note is the start time plus the inter-onset time, which is given by the ioi: parameter. If no ioi: parameter is
specified, the inter-onset time defaults to the duration, given by dur:. In all cases, the default start time of a note can be
overridden by the keyword parameter time:.

When does the score begin and end? The behavior SCORE-BEGIN-END contains the beginning and ending of the
score (these are used for score manipulations, e.g. when scores are merged, their begin times can be aligned.) When
timed-seq is used to synthesize a score, the SCORE-BEGIN-END marker is not evaluated. The score-gen macro
inserts a “note” of the form (0 0 (SCORE-BEGIN-END begin-time end-time)) at the time given by the begin:
keyword, with begin-time and end-time determined by the begin: and end: keyword parameters, respectively. If the
begin: keyword is not provided, the score begins at zero. If the end: keyword is not provided, the score ends at the
default start time of what would be the next note after the last note in the score (as described in the previous paragraph).
Note: if time: is used to compute note starting times, and these times are not increasing, it is strongly advised to use
end: to specify an end time for the score, because the default end time may be anywhere in the middle of the generated
sequence.

What function is called to synthesize the note? The name: parameter names the function. Like other parameters, the
value can be any expression, including something like next(fn-name-pattern), allowing function names to be
recomputed for each note. The default value is note.

Can I make parameters depend upon the starting time or the duration of the note? Parameter expressions can use the
variable sg:start to access the start time of the note, sg:ioi to access the inter-onset time, and sg:dur to access the
duration (stretch factor) of the note. Also, sg:count counts how many notes have been computed so far, starting at
0. The order of computation is: sg:start first, then sg:ioi and sg:dur, so for example, an expression to compute
sg:dur can depend on sg:ioi.

Can parameters depend on each other? The keyword pre: introduces an expression that is evaluated before each note,
and post: provides an expression to be evaluated after each note. The pre: expression can assign one or more global
variables which are then used in one or more expressions for parameters.

How do I debug score-gen expressions? You can set the trace: parameter to true (t) to enable a print statement for
each generated note.

v 3.24 194

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

How can I save scores generated by score-gen that I like? If the keyword parameter save: is set to a symbol, the
global variable named by the symbol is set to the value of the generated sequence. Of course, the value returned by
score-gen is just an ordinary list that can be saved like any other value.

In summary, the following keywords have special interpretations in score-gen: begin:, end:, time:, dur:, name:,
ioi:, trace:, save:, score-len:, score-dur:, pre:, post:. All other keyword parameters are expressions that
are evaluated once for each note and become the parameters of the notes.

14.4.3 Score Manipulation

Nyquist encourages the representation of music as executable programs, or behaviors, and there are various ways to
modify behaviors, including time stretching, transposition, etc. An alternative to composing executable programs is to
manipulate scores as editable data. Each approach has its strengths and weaknesses. This section describes functions
intended to manipulate Xmusic scores as generated by, or at least in the form generated by, score-gen. Recall that this
means scores are lists of events (e.g. notes), where events are three-element lists of the form (time duration expression,
and where expression is a standard lisp function call where all parameters are keyword parameters. In addition, the first
“note” may be the special SCORE-BEGIN-END expression. If this is missing, the score begins at zero and ends at the end
of the last note.

For convenience, a set of functions is offered to access properties of events (or notes) in scores. Although lisp functions
such as car, cadr, and caddr can be used, code is more readable when more mnemonic functions are used to access
events.

event-time(event) [SAL]
(event-time event) [LISP]

Retrieve the time field from an event.

event-set-time(event, time) [SAL]
(event-set-time event time) [LISP]

Construct a new event where the time of event is replaced by time.

event-dur(event) [SAL]
(event-dur event) [LISP]

Retrieve the duration (i.e. the stretch factor) field from an event.

event-set-dur(event, dur) [SAL]
(event-set-dur event dur) [LISP]

Construct a new event where the duration (or stretch factor) of event is replaced by dur.

event-expression(event) [SAL]
(event-expression event) [LISP]

Retrieve the expression field from an event.

event-set-expression(event, dur) [SAL]
(event-set-expression event dur) [LISP]

Construct a new event where the expression of event is replaced by expression.

event-end(event) [SAL]
(event-end event) [LISP]

Retrieve the end time of event, its time plus its duration.

expr-has-attr(expression, attribute) [SAL]
(expr-has-attr expression attribute) [LISP]

Test whether a score event expression has the given attribute.

v 3.24 195

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

expr-get-attr(expression, attribute [, default]) [SAL]
(expr-get-attr expression attribute [default]) [LISP]

Get the value of the given attribute from a score event expression. If attribute is not present, return default if spec-
ified, and otherwise nil. (See the example after score-apply below for an example using expr-get-attr.)

expr-set-attr(expr, attribute, value) [SAL]
(expr-set-attr expr attribute value) [LISP]

Construct a new expression identical to expr except that the attribute has value. (See the example after
score-apply below for an example using expr-set-attr.)

event-has-attr(event, attribute) [SAL]
(event-has-attr event attribute) [LISP]

Test whether a given score event’s expression has the given attribute.

event-get-attr(event, attribute, [default]) [SAL]
(event-get-attr event attribute [default]) [LISP]

Get the value of the given attribute from a score event’s expression. If attribute is not present, return default if
specified, and otherwise nil.

event-set-attr(event, attribute, value) [SAL]
(event-set-attr event attribute value) [LISP]

Construct a new event identical to event except that the attribute has value.

Functions are provided to shift the starting times of notes, stretch times and durations, stretch only durations, add
an offset to a keyword parameter, scale a keyword parameter, and other manipulations. Functions are also provided
to extract ranges of notes, notes that match criteria, and to combine scores. Most of these functions (listed below
in detail) share a set of keyword parameters that optionally limit the range over which the transformation operates.
The from-index: and to-index: parameters specify the index of the first note and the index of the last note to be
changed, where 1 (not zero) denotes the first note. If indices are in range, the number of note selected is to-index -
from-index + 1). Out-of-range indices are ignored. If these numbers are negative, they are offsets from the end of the
score, e.g. -1 denotes the last note of the score. The from-time: and to-time: indicate a range of starting times
of notes that will be affected by the manipulation. Only notes whose time is greater than or equal to the from-time
and strictly less than the to-time are modified. If both index and time ranges are specified, only notes that satisfy
both constraints are selected. (Note: in LISP syntax, colons precede the keyword, so use :from-index, :to-index,
:from-time, and :to-time.)

score-sorted(score) [SAL]
(score-sorted score) [LISP]

Test if score is sorted.

score-sort(score [, copy-flag]) [SAL]
(score-sort score [copy-flag]) [LISP]

Sort the notes in a score into start-time order. If copy-flag is nil, this is a destructive operation which should only
be performed if the top-level score list is a fresh copy that is not shared by any other variables. (The copy-flag is
intended for internal system use only.) For the following operations, it is assumed that scores are sorted, and all
operations return a sorted score.

score-shift(score, offset, from-index: i, to-index: j, from-time: x, to-time: y) [SAL]
(score-shift score offset :from-index i :to-index j :from-time x :to-time y) [LISP]

Add a constant offset to the starting time of a set of notes in score. By default, all notes are modified, but the
range of notes can be limited with the keyword parameters. The begin time of the score is decreased if necessary
to the minimum time of any event that is moved to an earlier time (by a negative offset), and the end time of the
score is increased if necessary to the maximum end time of any event that is moved to a later time. If all shifted

v 3.24 196

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

events remain within the score’s begin-to-end range, the begin and end times are not changed. The original score
is not modified, and a new score is returned.

score-stretch(score, factor, dur: dur-flag, time: time-flag,
from-index: i, to-index: j, from-time: x, to-time: y) [SAL]

(score-stretch score factor :dur dur-flag :time time-flag
:from-index i :to-index j :from-time x :to-time y) [LISP]

Stretch note times and durations by factor. The default dur-flag is non-null, but if dur-flag is null, the original
durations are retained and only times are stretched. Similarly, the default time-flag is non-null, but if time-flag is
null, the original times are retained and only durations are stretched. If both dur-flag and time-flag are null, the
score is not changed. If a range of notes is specified, times are scaled within that range, and notes after the range
are shifted so that the stretched region does not create a "hole" or overlap with notes that follow. If the range
begins or ends with a time (via from-time: and to-time:), time stretching takes place over the indicated
time interval independent of whether any notes are present or where they start. In other words, the “rests” are
stretched along with the notes. The original score is not modified, and a new score is returned.

score-transpose(score, keyword, amount, from-index: i, to-index: j,
from-time: x, to-time: y) [SAL]

(score-transpose score keyword amount :from-index i :to-index j
:from-time x :to-time y) [LISP]

For each note in the score and in any indicated range, if there is a keyword parameter matching keyword and
the parameter value is a number, increment the parameter value by amount. For example, to tranpose up by
a whole step, write (score-transpose 2 :pitch score). The original score is not modified, and a new
score is returned. If keyword is :pitch and a corresponding parameter value is a list, each element of the list
is incremented by amount. This special case is in keeping with the convention of timed-seq in which score
events with lists for the :pitch attribute are expanded into "chords" by instantiating an event for each element
(pitch) in the list (chord).

score-scale(score, keyword, amount, from-index: i, to-index: j,
from-time: x, to-time: y) [SAL]

(score-scale score keyword amount :from-index i :to-index j
:from-time x :to-time y) [LISP]

For each note in the score and in any indicated range, if there is a keyword parameter matching keyword and the
parameter value is a number, multiply the parameter value by amount. The original score is not modified, and a
new score is returned.

score-sustain(score, factor, from-index: i, to-index: j, from-time: x, to-time: y) [SAL]
(score-sustain score factor :from-index i :to-index j :from-time x :to-time y) [LISP]

For each note in the score and in any indicated range, multiply the duration (stretch factor) by amount. This can
be used to make notes sound more legato or staccato, and does not change their starting times. The original score
is not modified, and a new score is returned.

score-voice(score, replacement-list, from-index: i, to-index: j,
from-time: x, to-time: y) [SAL]

(score-voice score replacement-list :from-index i :to-index j
:from-time x :to-time y) [LISP]

For each note in the score and in any indicated range, replace the behavior (function) name using replacement-list,
which has the format: ((old1 new1) (old2 new2) ...), where oldi indicates a current behavior name and
newi is the replacement. If oldi is *, it matches anything. For example, to replace my-note-1 by trombone and
my-note-2 by horn, use score-voice(score, {{my-note-1 trombone} {my-note-2 horn}}). To re-
place all instruments with piano, use score-voice(score, {{* piano}}). The original score is not modi-
fied, and a new score is returned.

v 3.24 197

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

score-merge(score1, score2, ...) [SAL]
(score-merge score1 score2 ...) [LISP]

Create a new score containing all the notes of the parameters, which are all scores. The resulting notes retain their
original times and durations. The merged score begin time is the minimum of the begin times of the parameters
and the merged score end time is the maximum of the end times of the parameters. The original scores are not
modified, and a new score is returned.

score-append(score1, score2, ...) [SAL]
(score-append score1 score2 ...) [LISP]

Create a new score containing all the notes of the parameters, which are all scores. The begin time of the first
score is unaltered. The begin time of each other score is aligned to the end time of the previous score; thus,
scores are “spliced” in sequence. The original scores are not modified, and a new score is returned.

score-select(score, predicate, from-index: i, to-index: j,
from-time: x, to-time: y, reject: flag, extract: ex [SAL]

(score-select score predicate :from-index i :to-index j
:from-time x :to-time y :reject flag :extract ex) [LISP]

Select (or reject) notes to form a new score. Notes are selected if they fall into the given ranges of index and
time and they satisfy predicate, a function of three parameters that is applied to the start time, duration, and the
expression of the note. Alternatively, predicate may be t, indicating that all notes in range are to be selected.
Note that from-index: i and to-index: j are 1-based: A value of 1 refers to the first note, etc., because the
zeroth element of the score is a SCORE-BEGIN-END event. For consistency, if a SCORE-BEGIN-END event is
missing from score, one is inserted before any further processing. The selected notes are combined to form a new
score. By default, ex, the value of the extract: keyword, is false, and the begin and end markers are retained
from score. Conceptually, the score and its timing are retained as an object, but only some of its constituent
sound events are retained. Otherwise, if ex is true (non-nil), the begin and end times are computed based on
the selected (extracted) events: The begin time is from-time x, if present, and otherwise the time of the first
event (if any), and otherwise the begin time of score. Similarly, the end time is the to-time y, if present, and
otherwise the end time of the last event (if any), and otherwise the new start time. Alternatively, if the reject:
parameter is non-null, the notes not selected form the new score. In other words the selected notes are rejected or
removed to form the new score. The begin and end times of score are retained and the extract parameter (ex)
is ignored. In all cases, the original score is not modified, and a new score is returned.

score-set-begin(score, time) [SAL]
(score-set-begin score time) [LISP]

The begin time from the score’s SCORE-BEGIN-END marker is set to time. The original score is not modified,
and a new score is returned.

score-get-begin(score) [SAL]
(score-get-begin score) [LISP]

Return the begin time of the score.

score-set-end(score, time) [SAL]
(score-set-end score time) [LISP]

The end time from the score’s SCORE-BEGIN-END marker is set to time. The original score is not modified, and
a new score is returned.

v 3.24 198

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

score-get-end(score) [SAL]
(score-get-end score) [LISP]

Return the end time of the score.

score-must-have-begin-end(score) [SAL]
(score-must-have-begin-end score) [LISP]

If score does not have a begin and end time, construct a score with a SCORE-BEGIN-END expression and return
it. If score already has a begin and end time, just return the score. The orignal score is not modified.

score-filter-length(score, cutoff) [SAL]
(score-filter-length score cutoff) [LISP]

Remove notes that extend beyond the cutoff time. This is similar to score-select, but the here, events are
removed when their nominal ending time (start time plus duration) exceeds the cutoff, whereas the to-time:
parameter is compared to the note’s start time. The original score is not modified, and a new score is returned.

score-repeat(score, n) [SAL]
(score-repeat score n) [LISP]

Make a sequence of n copies of score. Each copy is shifted to that it’s begin time aligns with the end time of the
previous copy, as in score-append. The original score is not modified, and a new score is returned.

score-stretch-to-length(score, length) [SAL]
(score-stretch-to-length score length) [LISP]

Stretch the score so that the end time of the score is the score’s begin time plus length. The original score is not
modified, and a new score is returned.

score-filter-overlap(score) [SAL]
(score-filter-overlap score) [LISP]

Remove overlapping notes (based on the note start time and duration), giving priority to the positional order
within the note list (which is also time order). The original score is not modified, and a new score is returned.

score-print(score, [lines]) [SAL]
(score-print score [lines]) [LISP]

Print a score with one note per line. Returns nil. If lines (optional FIXNUM) is given, print a maximum of that
many lines (but the minimum is at least 3). The format is first lines-2 score events, the line "...", and the last
score event.

score-play(score) [SAL]
(score-play score) [LISP]

Play score using timed-seq to convert the score to a sound, and play to play the sound.

score-adjacent-events(score, function, from-index: i, to-index: j,
from-time: x, to-time: y) [SAL]

(score-adjacent-events score function :from-index i :to-index j
:from-time x :to-time y) [LISP]

Call (function A B C), where A, B, and C are consecutive notes in the score. The result replaces B. If the
result is nil, B is deleted, and the next call will be (function A C D), etc. The first call is to (function
nil A B) and the last is to (function Y Z nil). If there is just one note in the score, (function nil A
nil) is called. Function calls are not made if the note is outside of the indicated range. This function allows
notes and their parameters to be adjusted according to their immediate context. The original score is not modified,
and a new score is returned.

v 3.24 199

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

score-apply(score, function, from-index: i, to-index: j, from-time: x, to-time: y) [SAL]
(score-apply score function :from-index i :to-index j :from-time x :to-time y) [LISP]

Replace each note in the score with the result of (function time dur expression) (in Lisp) or
function (time, dur, expression) (in SAL), where time, dur, and expression are the time, duration, and
expression of the note. If a range is indicated, only notes in the range are replaced. The original score is not
modified, and a new score is returned.

For example, the following uses score-apply to insert an accent: attribute with value 100 on every sound event
(note) where pitch: is greater than 70. Notice that add-accents must be quoted to pass the name of the function
to score-apply (without the quote, add-accents denotes the value of a variable, but as a variable, add-accents
is undefined). Also, note that add-accents must construct and return a valid score event, hence the expression
list(time, dur, sound)).

set my-score = {{0 1 {note pitch: 60}}
{1 1 {note pitch: 72}}}

function add-accents(time, dur, sound)
begin

if expr-get-attr(sound, :pitch, 70) > 70 then
set sound = expr-set-attr(sound, :accent, 100)

return list(time, dur, sound)
end

exec score-print(score-apply(my-score, quote(add-accents)))

The output will be:

((0 0 (SCORE-BEGIN-END 0 2))
(0 1 (NOTE :PITCH 60))
(1 1 (NOTE :PITCH 72 :ACCENT 100))
)

score-indexof(score, function, from-index: i, to-index: j,
from-time: x, to-time: y) [SAL]

(score-indexof score function :from-index i :to-index j :from-time x :to-time y) [LISP]
Return the index (position) of the first score event (in range) for which applying function using (function
time dur expression) returns true.

score-last-indexof(score, function, from-index: i, to-index: j,
from-time: x, to-time: y) [SAL]

(score-last-indexof score function :from-index i :to-index j
:from-time x :to-time y) [LISP]

Return the index (position) of the last score event (in range) for which applying function using (function
time dur expression) returns true.

score-randomize-start(score, amt, from-index: i, to-index: j,
from-time: x, to-time: y) [SAL]

(score-randomize-start score amt :from-index i :to-index j
:from-time x :to-time y) [LISP]

Alter the start times of notes by a random amount up to plus or minus amt. The original score is not modified,
and a new score is returned.

v 3.24 200

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

14.4.4 Xmusic and Standard MIDI Files

Nyquist has a general facility to read and write MIDI files. You can even translate to and from a text representation, as
described in Chapter 11. It is also useful sometimes to read notes from Standard MIDI Files into Xmusic scores and
vice versa.

Using score-read-smf and score-read, MIDI notes are translated to Xmusic score events as follows:

(time dur (NOTE :chan channel :pitch keynum :vel velocity)),

where channel, keynum, and velocity come directly from the MIDI message (channels are numbered starting from zero).
Note also that note-off messages are implied by the stretch factor dur which is duration in seconds.

The score-from-seq function allows you to obtain control changes and other MIDI messages.

score-read-smf(filename) [SAL]
(score-read-smf filename) [LISP]

Read a standard MIDI file from filename. Return an Xmusic score, or nil if the file could not be opened. The
start time is zero, and the end time is the maximum end time of all notes. A very limited interface is offered
to extract MIDI program numbers from the file: The global variable *rslt* is set to a list of MIDI program
numbers for each channel. E.g. if *rslt* is (0 20 77), then program for channel 0 is 0, for channel 1 is 20,
and for channel 2 is 77. Program changes were not found on other channels. The default program number is 0,
so in this example, it is not known whether the program 0 on channel 0 is the result of a real MIDI program
change command or just a default value. If more than one program change exists on a channel, the last program
number is recorded and returned, so this information will only be completely correct when the MIDI file sends
single program change per channel before any notes are played. This, however, is a fairly common practice.
Note that the list returned as *rslt* can be passed to score-write-smf, described below.

score-read(filename) [SAL]
(score-read filename) [LISP]

Read an Adagio file from filename. Return an Xmusic score, or nil if the file could not be opened. See Chapter
11 for details on Adagio, a text-based score language. See score-read-smf for details on handling program
changes.

score-from-seq(seq, prog: pflag, synths: synths,
bend: bend, cpress: cpress, ctrl: ctrls) [SAL]

(score-from-seq seq :prog pflag :synths synths
:bend bend :cpress cpress :ctrl ctrls) [LISP]

Produce a score from a sequence (see Section 11.1) type seq. The optional pflag, if non-null, will insert
program changes as event :prog attributes in score events. The bend and cpress (channel pressure) values
may be :onset to introduce :bend or :cpress attributes into score events, or :contin to encode these MIDI
messages as SOUNDs available through event :contin attributes. The ctrl parameter is a list where the first
element is either :onset or :contin and the remaining elements are controller numbers to be encoded. In all
cases :contin values appear in score events as an object. You can access the SOUNDs that encode control
changes using the functions ctrlfn-bend(contin), ctrlfn-cpress(contin) or ctrlfn-ctrl(contin,
number), which will return const(0) if no corresponding MIDI messages were found. (As a special case the
default for controller 7 (volume pedal) is const(1)). See lib/midi/midi_tutorial.htm for more details
and code examples. To test for the presence of MIDI messages and avoid the construction of const(0), use
ctrlfn-bend?(contin), ctrlfn-cpress?(contin) or ctrlfn-ctrl?(contin, number).

v 3.24 201

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

score-write-smf(score, filename, [programs as-adagio]) [SAL]
(score-write-smf score filename [programs as-adagio]) [LISP]

Write a standard MIDI file to filename with notes in score. In this function, every event in the score with a
pitch: attribute, regardless of the “instrument” (or function name), generates a MIDI note, using the chan:
attribute for the channel (default 0) and the vel: attribute for velocity (default 100). There is no facility (in the
current implementation) to issue control changes, but to allow different instruments, MIDI programs may be set
in two ways. The simplest is to associate programs with channels using the optional programs parameter, which
is simply a list of up to 16 MIDI program numbers. Corresponding program change commands are added to the
beginning of the MIDI file. If programs has less than 16 elements, program change commands are only sent on
the first n channels. The second way to issue MIDI program changes is to add a program: keyword parameter
to a note in the score. Typically, the note will have a pitch: of nil so that no actual MIDI note-on message is
generated. If program changes and notes have the same starting times, their relative playback order is undefined,
and the note may be cut off by an immediately following program change. Therefore, program changes should
occur slightly, e.g. 1 ms, before any notes. Program numbers and channels are numbered starting at zero,
matching the internal MIDI representation. This may be one less than displayed on MIDI hardware, sequencers,
etc. The as-adagio optional parameter should normally be omitted. If non-nil, the file is written in Adagio
format, but if you want to do that, call score-write instead. Xmusic scores do not specify tempo, so the MIDI
file is written with a fixed tempo of 100bpm. If you create scores or stretch scores so that each beat is exactly
0.6s (100bpm), sequencers and score editors will quantize your scores correctly. Otherwise, the timing will be
correct, but for example a score with one note every second will be notated as 1 note every 1 2/3 beats.

score-write(score, filename, [programs, absolute]) [SAL]
(score-write score filename [programs absolute)] [LISP]

Write an Adagio format file to filename with notes in score, using absolute times if absolute is true, otherwise
write relative times (the default). See Chapter 11 for details on Adagio, a text-based score language. See
score-write-smf for details on MIDI program changes.

14.4.5 Workspaces

When working with scores, you may find it necessary to save them in files between work sessions. This is not an issue
with functions because they are normally edited in files and loaded from them. In contrast, scores are created as Lisp
data, and unless you take care to save them, they will be destroyed when you exit the Nyquist program.

A simple mechanism called a workspace has been created to manage scores (and any other Lisp data, for that matter). A
workspace is just a set of lisp global variables. These variables are stored in the file workspace.lsp. For simplicity,
there is only one workspace, and no backups or versions are maintained, but the user is free to make backups and copies
of workspace.lsp. To help remember what each variable is for, you can also associate and retrieve a text string with
each variable. The following functions manage workspaces.

In addition, when a workspace is loaded, you can request that functions be called. For example, the workspace might
store descriptions of a graphical interface. When the workspace is loaded, a function might run to convert saved data
into a graphical interface. (This is how sliders are saved by the IDE.)

add-to-workspace(symbol) [SAL]
(add-to-workspace symbol) [LISP]

Adds a global variable to the workspace. The symbol should be a (quoted) symbol.

save-workspace() [SAL]
(save-workspace) [LISP]

All global variables in the workspace are saved to workspace.lsp (in the current directory), overwriting the

v 3.24 202

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

previous file.

describe(symbol [, description]) [SAL]
(describe symbol [description]) [LISP]

If description, a text string, is present, associate description with the variable named by the symbol. If symbol is
not already in the workspace, it is added. If description is omitted, the function returns the current description
(from a previous call) for symbol.

add-action-to-workspace(symbol) [SAL]
(add-action-to-workspace symbol) [LISP]

Requests that the function named by symbol be called when the workspace is loaded (if the function is defined).

To restore a workspace, use the command load "workspace". This restores the values of the workspace variables
to the values they had when save-workspace was last called. It also restores the documentation strings, if set, by
describe. If you load two or more workspace.lsp files, the variables will be merged into a single workspace. The
current set of workspace variables are saved in the list *workspace*. To clear the workspace, set *workspace* to
nil. This does not delete any variables, but means that no variables will be saved by save-workspace until variables
are added again.

Functions to be called are saved in the list *workspace-actions*. to clear the functions, set *workspace-actions*
to nil. Restore functions to the list with add-action-to-workspace.

14.4.6 Utility Functions

This chapter concludes with details of various utility functions for score manipulation.

patternp(expression) [SAL]
(patternp expression) [LISP]

Test if expression is an Xmusic pattern.

params-transpose(params, keyword, amount) [SAL]
(params-transpose params keyword amount) [LISP]

Add a transposition amount to a score event parameter. The params parameter is a list of keyword/value pairs (not
preceded by a function name). The keyword is the keyword of the value to be altered, and amount is a number to
be added to the value. If no matching keyword is present in params, then params is returned. Otherwise, a new
parameter list is constructed and returned. The original params is not changed.

params-scale(params, keyword, amount) [SAL]
(params-scale params keyword amount) [LISP]

Scale a score event parameter by some factor. This is like params-transpose, only using multiplication. The
params list is a list of keyword/value pairs, keyword is the parameter keyword, and amount is the scale factor.

interpolate(x, x1, y1, x2, y2) [SAL]
(interpolate x x1 y1 x2 y2) [LISP]

Linearly interpolate (or extrapolate) between points (x1, y1) and (x2, y2) to compute the y value corresponding
to x.

v 3.24 203

Nyquist Reference Manual Chapter 14. Xmusic and Algorithmic Composition

intersection(a, b) [SAL]
(intersection a b) [LISP]

Compute the set intersection of lists a and b.

union(a, b) [SAL]
(union a b) [LISP]

Compute the set union of lists a and b.

set-difference(a, b) [SAL]
(set-difference a b) [LISP]

Compute the set of all elements that are in a but not in b.

subsetp(a, b) [SAL]
(subsetp a b) [LISP]

Returns true iff a is a subset of b, that is, each element of a is a member of b.

v 3.24 204

15 Nyquist Libraries

Nyquist is always growing with new functions. Functions that are most fundamental are added to the core language.
These functions are automatically loaded when you start Nyquist, and they are documented in the preceding chapters.
Other functions seem less central and are implemented as lisp files that you can load. Many of these functions and
files are not included in the main distribution of Nyquist. Instead, they are extensions (see Section 2.4). Extensions are
just like any other library except you must first install them with the Extension Manager in the NyquistIDE, and each
extension is in a separate folder within the lib folder.

For example, to get statistics functions, load "statistics", but to get the phase vocoder test functions, first install
the pvoc extension, and then load "pvoc/phasevocoder.sal". In many cases, functions within an extension
will “autoload,” e.g. after you install the labels extension, the first time you call read-labels or write-labels,
labels.sal will be loaded automatically to define these functions, as if the function had been loaded all along.
Extensions also update the function call quick reference and completion feature in the NyquistIDE.

Many libraries are documented in one of the following sections, but see the Extension Manager for possible new
additions. Extensions have documentation, which you can find using the Extension Manager.

15.1 Statistics

The file statistics.lsp defines a class and functions to compute simple statistics, histograms, correlation, and some
other tests. See the source code for complete details.

15.2 Plots

The Nyquist IDE has a simple facility to plot signals. For more advanced plotting, you can use gnuplot.sal (load
"gnuplot.sal") to generate plots for gnuplot, a separate, but free program. See the source for details.

15.3 Labeling Audio Events, Marking Audio Times, Displaying
Marked Audio Times

The labels.sal program can convert lists to label files and label files to lists. Label files can be loaded along with
audio in Audacity to show metadata. See the source for details.

205

Nyquist Reference Manual Chapter 15. Nyquist Libraries

15.4 Linear Regression

See the regression extension and its regression.sal for simple linear regression functions.

15.5 Vector Math, Linear Algebra

See vectors.lsp and load "vectors" for a simple implementation of vector arithmetic and other vector functions.
These “vectors” are implemented as lists, but there are functions to convert to and from arrays.

15.6 JSON Input and Output

JSON is widely used in web technology, scientific computing and many other areas. See json.sal and load "json"
for a simple implementation of JSON input and output. On input, JSON dictionaries are represented as association lists
and JSON arrays are represented as XLisp arrays. Data can be retrieved from dictionaries using json-field. If you
are writing in Lisp, note that you can call (sal-load "json") to load and compile json.sal so that you can call its
functions from Lisp.

For output, you can either write a structure consisting of nested arrays and dictionaries (association lists), or you can
call a sequence of functions to, for example, begin writing an array, write each element of the array and finish writing
the array. This way, you can write JSON as the data is computed rather than building a monolithic structure in Lisp and
then writing it.

Note that Lisp is already able to read and write structured data, and if everyone used Lisp and SAL, there might not be
any need for JSON. Nyquist scores are an example of data you can save to files in a text format and read back in. So
JSON is not recommended except for interoperation with other non-Lisp systems.

15.7 Piano Synthesizer

The piano synthesizer (library name is pianosyn.lsp) generates realistic piano tones using a multiple wavetable
implementation by Zheng (Geoffrey) Hua and Jim Beauchamp, University of Illinois. Detailed acknowledgements print
when you load the file. Further information and example code can be found in nyquist/lib/piano/piano.htm.
There are several useful functions in this library. These functions auto-load the pianoysn.lsp file if it is not already
loaded:

piano-note(duration, step, dynamic) [SAL]
(piano-note duration step dynamic) [LISP]

Synthesizes a piano tone. Duration is the duration to the point of key release, after which there is a rapid decay.
Step is the pitch in half steps, and dynamic is approximately equivalent to a MIDI key velocity parameter. Use a
value near 100 for a loud sound and near 10 for a soft sound.

v 3.24 206

Nyquist Reference Manual Chapter 15. Nyquist Libraries

piano-note-2(step, dynamic) [SAL]
(piano-note-2 step dynamic) [LISP]

Similar to piano-note except the duration is nominally 1.0.

piano-midi(midi-file-name) [SAL]
(piano-midi midi-file-name) [LISP]

Use the piano synthesizer to play a MIDI file. The file name (a string) is given by midi-file-name.

piano-midi2file(midi-file-name, sound-file-name) [SAL]
(piano-midi2file midi-file-name sound-file-name) [LISP]

Use the piano synthesizer to play a MIDI file. The MIDI file is given by midi-file-name and the (monophonic)
result is written to the file named sound-file-name.

15.8 Dynamics Compression

These functions in the compress extension implement a compressor originally intended for noisy speech audio, but
usable in a variety of situations. There are actually two compressors that can be used in series. The first, compress,
is a fairly standard one: it detects signal level with an RMS detector and uses table-lookup to determine how much
gain to place on the original signal at that point. One bit of cleverness here is that the RMS envelope is “followed” or
enveloped using snd-follow, which does look-ahead to anticipate peaks before they happen.

The other interesting feature is compress-map, which builds a map in terms of compression and expansion. For speech,
the recommended procedure is to figure out the noise floor on the signal you are compressing (for example, look at the
signal where the speaker is not talking). Use a compression map that leaves the noise alone and boosts signals that are
well above the noise floor. Alas, the compress-map function is not written in these terms, so some head-scratching is
involved, but the results are quite good.

The second compressor is called agc, and it implements automatic gain control that keeps peaks at or below 1.0. By
combining compress and agc, you can process poorly recorded speech for playback on low-quality speakers in noisy
environments. The compress function modulates the short-term gain to to minimize the total dynamic range, keeping
the speech at a generally loud level, and the agc function rides the long-term gain to set the overall level without
clipping.

compress-map(compress-ratio, compress-threshold, expand-ratio, expand-threshold,
limit: limit, transition: transition, verbose: verbose) [SAL]

(compress-map compress-ratio compress-threshold expand-ratio expand-threshold
:limit limit :transition transition :verbose verbose) [LISP]

Construct a map for the compress function. The map consists of two parts: a compression part and an expansion
part. The intended use is to compress everything above compress-threshold by compress-ratio, and to downward
expand everything below expand-threshold by expand-ratio. Thresholds are in dB and ratios are dB-per-dB.
0dB corresponds to a peak amplitude of 1.0 or rms amplitude of 0.7 If the input goes above 0dB, the output can
optionally be limited by setting limit: (a keyword parameter) to T. This effectively changes the compression
ratio to infinity at 0dB. If limit: is nil (the default), then the compression-ratio continues to apply above 0dB.

Another keyword parameter, transition:, sets the amount below the thresholds (in dB) that a smooth transition
starts. The default is 0, meaning that there is no smooth transition. The smooth transition is a 2nd-order
polynomial that matches the slopes of the straight-line compression curve and interpolates between them.

v 3.24 207

Nyquist Reference Manual Chapter 15. Nyquist Libraries

If verbose is true (this is the default), the map is printed, showing, for each dB value below zero of this input,
what is the gain (in dB) indicated by the output. Only regions where the map is changing are printed because at
lower values, the dB gain is constant.

It is assumed that expand-threshold <= compress-threshold <= 0 The gain is unity at 0dB so if compression-ratio
> 1, then gain will be greater than unity below 0dB.

The result returned by this function is a sound for use in the shape function. The sound maps input dB to gain.
Time 1.0 corresponds to 0dB, time 0.0 corresponds to -100 dB, and time 2.0 corresponds to +100dB, so this is a
100hz “sample rate” sound. The sound gives gain in dB.

db-average(input, min: mindb) [SAL]
(db-average input :min mindb) [LISP]

Compute the average amplitude of input in dB. The result is a sound at a rate of about 40Hz based on RMS of
input such that 0 (dB) corresponds to a sinusoid with a peak amplitude of 1. This is the same dB estimate that is
used in the compress function. If mindb is specified and non-nil, the result samples below this value will be
replaced by mindb. For example, if you plot the db-average curve of an instrument with a range from -3 dB
down to -30 dB, but silences exist at -90 dB, then most of the interesting values will be squeezed into the top 1/3
of a plot. Instead, if you specify min to be -30, then the interesting range will span the entire plot (and silences
will show up at -30 dB, the value of min).

compress(input, map, rise-time, fall-time [, lookahead]) [SAL]
(compress input map rise-time fall-time [lookahead]) [LISP]

Compress input using map, a compression curve probably generated by compress-map (see above). Adjustments
in gain have the given rise-time and fall-time. Lookahead tells how far ahead to look at the signal, and is rise-time
by default.

agc(input, range, rise-time, fall-time [, lookahead]) [SAL]
(agc input range rise-time fall-time [lookahead]) [LISP]

An automatic gain control applied to input. The maximum gain in dB is range. Peaks are attenuated to 1.0, and
gain is controlled with the given rise-time and fall-time. The look-ahead time default is rise-time.

15.9 Clipping Softener

The clipsoften extension was written to improve the quality of poorly recorded speech. In recordings of speech,
extreme clipping generates harsh high frequency noise. This can sound particulary bad on small speakers that will
emphasize high frequencies. This problem can be ameliorated by low-pass filtering regions where clipping occurs. The
effect is to dull the harsh clipping. Intelligibility is not affected by much, and the result can be much more pleasant on
the ears. Clipping is detected simply by looking for large signal values. Assuming 8-bit recording, this level is set to
126/127.

The function works by cross-fading between the normal signal and a filtered signal as opposed to changing filter
coefficients.

soften-clipping(snd, cutoff) [SAL]
(soften-clipping snd cutoff) [LISP]

Filter the loud regions of a signal where clipping is likely to have generated additional high frequencies. The
input signal is snd and cutoff is the filter cutoff frequency (4 kHz is recommended for speech).

v 3.24 208

Nyquist Reference Manual Chapter 15. Nyquist Libraries

15.10 Graphical Equalizer

The library (load "grapheq.lsp") works with the NyquistIDE’s Equalizer window (see Section 2.7, but this library
can be used directly in Nyquist programs for multi-band equalizers. This implementation uses Nyquist’s eq-band
function to split the incoming signal into different frequency bands. Bands are spaced geometrically, e.g. each band
could be one octave, meaning that each successive band has twice the bandwidth. An interesting possibility is using
computed control functions to make the equalization change over time.

nband-range(input, gains, lowf, highf) [SAL]
(nband-range input gains lowf highf) [LISP]

A graphical equalizer applied to input (a SOUND). The gain controls and number of bands is given by gains, an
ARRAY of SOUNDs (in other words, a Nyquist multichannel SOUND). Any sound in the array may be replaced by
a FLONUM. The bands are geometrically equally spaced from the lowest frequency lowf to the highest frequency
highf (both are FLONUMs).

nband(input, gains) [SAL]
(nband input gains) [LISP]

A graphical equalizer, identical to nband-range with a range of 20 to 20,000 Hz.

15.11 Sound Reversal

The reverse extension implements functions to play sounds in reverse.

s-reverse(snd) [SAL]
(s-reverse snd) [LISP]

Reverses snd (a SOUND). Sound must be shorter than *max-reverse-samples*, which is currently initialized
to 25 million samples. Reversal allocates about 4 bytes per sample. This function uses XLISP in the inner sample
loop, so do not be surprised if it calls the garbage collector a lot and runs slowly. The result starts at the starting
time given by the current environment (not necessarily the starting time of snd). If snd has multiple channels, a
multiple channel, reversed sound is returned.

s-read-reverse(filename, time-offset: offset, srate: sr, dur: dur,
nchans: chans, format: format, mode: mode, bits: n, swap: flag) [SAL]

(s-read-reverse filename :time-offset offset :srate sr :dur dur
:nchans chans :format format :mode mode :bits n :swap flag) [LISP]

This function is identical to s-read (see Section 7.5), except it reads the indicated samples in reverse. Like
s-reverse (see above), it uses XLISP in the inner loop, so it is slow. Unlike s-reverse, s-read-reverse
uses a fixed amount of memory that is independent of how many samples are computed. Multiple channels are
handled.

15.12 Time Delay Functions

The time-delay-fns.lsp library implements chorus, phaser, and flange effects.

v 3.24 209

Nyquist Reference Manual Chapter 15. Nyquist Libraries

phaser(snd) [SAL]
(phaser snd) [LISP]

A phaser effect applied to snd (a SOUND). There are no parameters, but feel free to modify the source code of this
one-liner.

flange(snd) [SAL]
(flange snd) [LISP]

A flange effect applied to snd. To vary the rate and other parameters, see the source code.

stereo-chorus(snd, delay: delay, depth: depth, rate1: rate1, rate2: rate2
saturation: saturation) [SAL]

(stereo-chorus snd :delay delay :depth depth :rate1 rate1 :rate2 rate2
:saturation saturation) [LISP]

A chorus effect applied to snd, a SOUND (monophonic). The output is a stereo sound with out-of-phase chorus
effects applied separately for the left and right channels. See the chorus function below for a description of the
optional parameters. The rate1 and rate2 parameters are rate parameters for the left and right channels.

chorus(snd, delay: delay, depth: depth, rate: rate, saturation: saturation, phase: phase)
[SAL]
(chorus snd :delay delay :depth depth :rate rate :saturation saturation :phase phase)
[LISP]

A chorus effect applied to snd. All parameters may be arrays as usual. The chorus is implemented as a variable
delay modulated by a sinusoid shifted by phase degrees (a FLONUM) oscillating at rate Hz (a FLONUM). The
sinusoid is scaled by depth (a FLONUM. The delayed signal is mixed with the original, and saturation (a FLONUM)
gives the fraction of the delayed signal (from 0 to 1) in the mix. Default values are delay 0.03, depth 0.003, rate
0.3, saturation 1.0, and phase 0.0 (degrees).

15.13 Multiple Band Effects

The bandfx extension implements several effects based on multiple frequency bands. The idea is to separate a signal
into different frequency bands, apply a slightly different effect to each band, and sum the effected bands back together
to form the result. This file includes its own set of examples. After loading the file, try f2(), f3(), f4(), and f5() to
hear them. Further discussion and examples can be found in nyquist/lib/bandfx/bandfx.lsp.

There is much room for expansion and experimentation with this library. Other effects might include distortion in
certain bands (for example, there are commercial effects that add distortion to low frequencies to enhance the sound of
the bass), separating bands into different channels for stereo or multichannel effects, adding frequency-dependent reverb,
and performing dynamic compression, limiting, or noise gate functions on each band. There are also opportunities for
cross-synthesis: using the content of bands extracted from one signal to modify the bands of another. The simplest of
these would be to apply amplitude envelopes of one sound to another. Please contact us (dannenberg@cs.cmu.edu) if
you are interested in working on this library.

apply-banded-delay(s, lowp, highp, num-bands, lowd, highd, fb, wet) [SAL]
(apply-banded-delay s lowp highp num-bands lowd highd fb wet) [LISP]

Separates input SOUND s into FIXNUM num-bands bands from a low frequency of lowp to a high frequency of
highp (these are FLONUMS that specify steps, not Hz), and applies a delay to each band. The delay for the
lowest band is given by the FLONUM lowd (in seconds) and the delay for the highest band is given by the FLONUM
highd. The delays for other bands are linearly interpolated between these values. Each delay has feedback gain

v 3.24 210

Nyquist Reference Manual Chapter 15. Nyquist Libraries

controlled by FLONUM fb. The delayed bands are scaled by FLONUM wet, and the original sound is scaled by 1 -
wet. All are summed to form the result, a SOUND.

apply-banded-bass-boost(s, lowp, highp, num-bands, num-boost, gain) [SAL]
(apply-banded-bass-boost s lowp highp num-bands num-boost gain) [LISP]

Applies a boost to low frequencies. Separates input SOUND s into FIXNUM num-bands bands from a low frequency
of lowp to a high frequency of highp (these are FLONUMS that specify steps, not Hz), and scales the lowest
num-boost (a FIXNUM) bands by gain, a FLONUM. The bands are summed to form the result, a SOUND.

apply-banded-treble-boost(s, lowp, highp, num-bands, num-boost, gain) [SAL]
(apply-banded-treble-boost s lowp highp num-bands num-boost gain) [LISP]

Applies a boost to high frequencies. Separates input SOUND s into FIXNUM num-bands bands from a low frequency
of lowp to a high frequency of highp (these are FLONUMS that specify steps, not Hz), and scales the highest
num-boost (a FIXNUM) bands by gain, a FLONUM. The bands are summed to form the result, a SOUND.

15.14 Granular Synthesis

Some granular synthesis functions are implemented in the gran extension. There are many variations and control
schemes one could adopt for granular synthesis, so it is impossible to create a single universal granular synthesis
function. One of the advantages of Nyquist is the integration of control and synthesis functions, and users are encouraged
to build their own granular synthesis functions incorporating their own control schemes. The gran.lsp file includes
many comments and is intended to be a useful starting point. Another possibility is to construct a score with an event
for each grain. Estimate a few hundred bytes per score event (obviously, size depends on the number of parameters) and
avoid using all of your computer’s memory.

sf-granulate(filename, grain-dur, grain-dev, ioi, ioi-dev, pitch-dev,
[file-start, file-end]) [SAL]

(sf-granulate filename grain-dur grain-dev ioi ioi-dev pitch-dev
[file-start file-end]) [LISP]

Granular synthesis using a sound file named filename as the source for grains. Grains are extracted from a sound
file named by filename by stepping through the file in equal increments. Each grain duration is the sum of
grain-dur and a random number from 0 to grain-dev. Grains are then multiplied by a raised cosine smoothing
window and resampled at a ratio between 1.0 and pitch-dev. If pitch-dev is greater than one, grains are stretched
and the pitch (if any) goes down. If pitch-dev is less than one, grains are shortened and the pitch goes up. Grains
are then output with an inter-onset interval between successive grains (which may overlap) determined by the
sum of ioi and a random number from 0 to ioi-dev. The duration of the resulting sound is determined by the
stretch factor (not by the sound file). The number of grains is the total sound duration (determined by the
stretch factor) divided by the mean inter-onset interval, which is ioi + ioi-dev * 0.5. The grains are taken from
equally-spaced starting points in filename, and depending on grain size and number, the grains may or may not
overlap. The output duration will simply be the sum of the inter-onset intervals and the duration of the last grain.
If ioi-dev is non-zero, the output duration will vary, but the expected value of the duration is the stretch factor. To
achieve a rich granular synthesis effect, it is often a good idea to sum four or more copies of sf-granulate
together. (See the gran-test function in gran.lsp.)

v 3.24 211

Nyquist Reference Manual Chapter 15. Nyquist Libraries

15.15 Chowning FM Voices

John Chowning developed voice synthesis methods using FM to simulate resonances for his 1981 composition "Phone."
He later recreated the synthesis algorithms in Max, and Jorge Sastre ported these to SAL. See fm-voices-chowning
extension and documentation for more details.

15.16 Atonal Melody Composition

Jorge Sastre contributed the atonal-melodies extension that generates atonal melodies. You can find links to an
example score and audio file in the code and also at http://algocompbook.com/examples.html.

15.17 MIDI Utilities

The midishow.lsp library has functions that can print the contents of MIDI files. This intended as a debugging aid.

midi-show-file(file-name) [SAL]
(midi-show-file file-name) [LISP]

Print the contents of a MIDI file to the console.

midi-show(the-seq [, out-file]) [SAL]
(midi-show the-seq [out-file]) [LISP]

Print the contents of the sequence the-seq to the file out-file (whose default value is the console.)

15.18 Reverberation

The reverb.lsp library implements artificial reverberation.

reverb(snd, time) [SAL]
(reverb snd time) [LISP]

Artificial reverberation applied to snd with a decay time of time.

15.19 DTMF Encoding

The dtmf extension implements DTMF encoding. DTMF is the “touch tone” code used by telephones.

dtmf-tone(key, len, space) [SAL]
(dtmf-tone key len space) [LISP]

Generate a single DTMF tone. The key parameter is either a digit (a FIXNUM from 0 through 9) or the atom STAR
or POUND. The duration of the done is given by len (a FLONUM) and the tone is followed by silence of duration
space (a FLONUM).

v 3.24 212

Nyquist Reference Manual Chapter 15. Nyquist Libraries

speed-dial(thelist) [SAL]
(speed-dial thelist) [LISP]

Generates a sequence of DTMF tones using the keys in thelist (a LIST of keys as described above under
dtmf-tone). The duration of each tone is 0.2 seconds, and the space between tones is 0.1 second. Use stretch
to change the “dialing” speed.

15.20 Dolby Surround(R), Stereo and Spatialization Effects

The spatial extension implements various functions for stereo manipulation and spatialization. It also includes some
functions for Dolby Pro-Logic panning, which encodes left, right, center, and surround channels into stereo. The stereo
signal can then be played through a Dolby decoder to drive a surround speaker array. This library has a somewhat
simplified encoder, so you should certainly test the output. Consider using a high-end encoder for critical work. There
are a number of functions in spatial.lsp for testing. See the source code and extension documentation for more
information.

stereoize(snd) [SAL]
(stereoize snd) [LISP]

Convert a mono sound, snd, to stereo. Four bands of equalization and some delay are used to create a stereo
effect.

widen(snd, amt) [SAL]
(widen snd amt) [LISP]

Artificially widen the stereo field in snd, a two-channel sound. The amount of widening is amt, which varies
from 0 (snd is unchanged) to 1 (maximum widening). The amt can be a SOUND or a number.

span(snd, amt) [SAL]
(span snd amt) [LISP]

Pan the virtual center channel of a stereo sound, snd, by amt, where 0 pans all the way to the left, while 1 pans
all the way to the right. The amt can be a SOUND or a number.

swapchannels(snd) [SAL]
(swapchannels snd) [LISP]

Swap left and right channels in snd, a stereo sound.

prologic(l, c, r, s) [SAL]
(prologic l c r s) [LISP]

Encode four monaural SOUNDs representing the front-left, front-center, front-right, and rear channels, respectively.
The return value is a stereo sound, which is a Dolby-encoded mix of the four input sounds.

pl-left(snd) [SAL]
(pl-left snd) [LISP]

Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front left channel.

pl-center(snd) [SAL]
(pl-center snd) [LISP]

Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front center channel.

pl-right(snd) [SAL]
(pl-right snd) [LISP]

Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the front right channel.

v 3.24 213

Nyquist Reference Manual Chapter 15. Nyquist Libraries

pl-rear(snd) [SAL]
(pl-rear snd) [LISP]

Produce a Dolby-encoded (stereo) signal with snd, a SOUND, encoded as the rear, or surround, channel.

pl-pan2d(snd, x, y) [SAL]
(pl-pan2d snd x y) [LISP]

Comparable to Nyquist’s existing pan function, pl-pan2d provides not only left-to-right panning, but front-
to-back panning as well. The function accepts three parameters: snd is the (monophonic) input SOUND, x is a
left-to-right position, and y is a front-to-back position. Both position parameters may be numbers or SOUNDs. An
x value of 0 means left, and 1 means right. Intermediate values map linearly between these extremes. Similarly,
a y value of 0 causes the sound to play entirely through the front speakers(s), while 1 causes it to play entirely
through the rear. Intermediate values map linearly. Note that, although there are usually two rear speakers in
Pro-Logic systems, they are both driven by the same signal. Therefore any sound that is panned totally to the
rear will be played over both rear speakers. For example, it is not possible to play a sound exclusively through
the rear left speaker.

pl-position(snd, x, y, config) [SAL]
(pl-position snd x y config) [LISP]

The position function builds upon speaker panning to allow more abstract placement of sounds. Like pl-pan2d,
it accepts a (monaural) input sound as well as left-to-right (x) and front-to-back (y) coordinates, which may be
FLONUMs or SOUNDs. A fourth parameter config specifies the distance from listeners to the speakers (in meters).
Current settings assume this to be constant for all speakers, but this assumption can be changed easily (see
comments in the code for more detail). There are several important differences between pl-position and
pl-pan2d. First, pl-position uses a Cartesian coordinate system that allows x and y coordinates outside of
the range (0, 1). This model assumes a listener position of (0,0). Each speaker has a predefined position as well.
The input sound’s position, relative to the listener, is given by the vector (x,y).

pl-doppler(snd, r) [SAL]
(pl-doppler snd r) [LISP]

Pitch-shift moving sounds according to the equation: fr = f0((c+vr)/c), where fr is the output frequency, f0 is the
emitted (source) frequency, c is the speed of sound (assumed to be 344.31 m/s), and vr is the speed at which the
emitter approaches the receiver. (vr is the first derivative of parameter r, the distance from the listener in meters.

15.21 Drum Machine

The drum machine software in the plight extension deserves further explanation. There is documentation associated
with the extension and available in the NyquistIDE Extension Manager. To use the software, install the extension and
load the code by evaluating:

load "plight/drum.lsp"
exec load-props-file(strcat(*plight-drum-path*,

"beats.props"))
exec create-drum-patches()
exec create-patterns()

Drum sounds and patterns are specified in the beats.props file (or whatever name you give to load-props-file).
This file contains two types of specifications. First, there are sound file specifications. Sound files are located by a line
of the form:

set sound-directory = "kit/"

v 3.24 214

Nyquist Reference Manual Chapter 15. Nyquist Libraries

This gives the name of the sound file directory, relative to the beats.props file. Then, for each sound file, there should
be a line of the form:

track.2.5 = big-tom-5.wav

This says that on track 2, a velocity value of 5 means to play the sound file big-tom-5.wav. (Tracks and
velocity values are described below.) The beats.props file contains specifications for all the sound files in
nyquist/lib/plight/plight/kit using 8 tracks. If you make your own specifications file, tracks should be
numbered consecutively from 1, and velocities should be in the range of 1 to 9.

The second set of specifications is of beat patterns. A beat pattern is given by a line in the following form:

beats.5 = 2--32--43-4-5---

The number after beats is just a pattern number. Each pattern is given a unique number. After the equal sign, the digits
and dashes are velocity values where a dash means “no sound.” Beat patterns should be numbered consecutively from 1.

Once data is loaded, there are several functions to access drum patterns and create drum sounds (described below).
The nyquist/lib/plight/plight/drums.lsp file contains an example function plight-drum-example to play
some drums. There is also the file nyquist/lib/plight/beats.props to serve as an example of how to specify
sound files and beat patterns.

drum(tracknum, patternnum, bpm) [SAL]
(drum tracknum patternnum bpm) [LISP]

Create a sound by playing drums sounds associated with track tracknum (a FIXNUM) using pattern patternnum.
The tempo is given by bpm in beats per minute. Normally patterns are a sequence of sixteenth notes, so the
tempo is in sixteenth notes per minute. For example, if patternnum is 10, then use the pattern specified for
beats.10. If the third character of this pattern is 3 and tracknum is 5, then on the third beat, play the soundfile
assigned to track.5.3. This function returns a SOUND.

drum-loop(snd, duration, numtimes) [SAL]
(drum-loop snd duration numtimes) [LISP]

Repeat the sound given by snd numtimes times. The repetitions occur at a time offset of duration, regardless of
the actual duration of snd. A SOUND is returned.

length-of-beat(bpm) [SAL]
(length-of-beat bpm) [LISP]

Given a tempo of bpm, return the duration of the beat in seconds. Note that this software has no real notion of
beat. A “beat” is just the duration of each character in the beat pattern strings. This function returns a FLONUM.

v 3.24 215

Bibliography

[1] R. B. Dannenberg and C. L. Fraley. "Fugue: Composition and Sound Synthesis with Lazy Evaluation and Behavioral
Abstraction." In Proceedings of the International Computer Music Conference, T. Wells and D. Butler (eds.), San
Francisco: International Computer Music Association, 1989, pp. 76-79.

[2] M. Simoni and R. B. Dannenberg. Algorithmic Composition: A Guide to Composing Music with Nyquist. Ann
Arbor: University of Michigan Press. 2013.

[3] D. S. Touretzky. LISP: A Gentle Introduction to Symbolic Computation. New York: Harper and Row. 1984.

216

Appendix A Extending Nyquist

WARNING:

Nyquist sound functions look almost like a human wrote them; they even have a fair number of comments for human
readers. Don’t be fooled: virtually all Nyquist functions are written by a special translator. If you try to write a new
function by hand, you will probably not succeed, and even if you do, you will waste a great deal of time. (End of
Warning.)

A.1 Translating Descriptions to C Code

The translator code used to extend Nyquist resides in the trnsrc directory. This directory also contains a special
init.lsp, so if you start XLisp or Nyquist in this directory, it will automatically read init.lsp, which in turn will
load the translator code (which resides in several files).

Also in the trnsrc directory are a number of .alg files, which contain the source code for the translator (more on
these will follow), and a number of corresponding .h and .c files.

To translate a .alg file to .c and .h files, you start XLisp or Nyquist in the trnsrc directory and type

(translate "prod")

where "prod" should really be replaced by the filename (without a suffix) you want to translate. Be sure you have a
saved, working copy of Nyquist or Xlisp before you recompile!

Note: On the Macintosh, just run Nyquist out of the runtime directory and then use the Load menu command to load
init.lsp from the trnsrc directory. This will load the translation code and change Nyquist’s current directory to
trnsrc so that commands like (translate "prod") will work.

A.2 Rebuilding Nyquist

After generating prod.c and prod.h, you need to recompile Nyquist. For Unix systems, you will want to generate a
new Makefile. Modify transfiles.lsp in your main Nyquist directory, run Xlisp or Nyquist and load makefile.lsp.
Follow the instructions to set your machine type, etc., and execute (makesrc) and (makefile).

217

Nyquist Reference Manual Appendix A. Extending Nyquist

A.3 Accessing the New Function

The new Lisp function will generally be named with a snd- prefix, e.g. snd-prod. You can test this by running
Nyquist. Debugging is usually a combination of calling the code from within the interpreter, reading the generated code
when things go wrong, and using a C debugger to step through the inner loop of the generated code. An approach I like
is to set the default sample rate to 10 hertz. Then, a one-second sound has only 10 samples, which are easy to print and
study on a text console.

For some functions, you must write some Lisp code to impose ordinary Nyquist behaviors such as stretching and time
shifting. A good approach is to find some structurally similar functions and see how they are implemented. Most of the
Lisp code for Nyquist is in nyquist.lsp.

Finally, do not forget to write up some documentation. Also, contributions are welcome. Send your .alg file,
documentation, Lisp support functions for nyquist.lsp, and examples or test programs to rbd@cs.cmu.edu. I will
either put them in the next release or make them available at a public ftp site.

A.4 Why Translation?

Many of the Nyquist signal processing operations are similar in form, but they differ in details. This code is complicated
by many factors: Nyquist uses lazy evaluation, so the operator must check to see that input samples are available before
trying to access them. Nyquist signals can have different sample rates, different block sizes, different block boundaries,
and different start times, all of which must be taken into account. The number of software tests is enormous. (This may
sound like a lot of overhead, but the overhead is amortized over many iterations of the inner loop. Of course setting up
the inner loop to run efficiently is one more programming task.)

The main idea behind the translation is that all of the checks and setup code are similar and relatively easy to generate
automatically. Programmers often use macros for this sort of task, but the C macro processor is too limited for the
complex translation required here. To tell the translator how to generate code, you write .alg files, which provide many
details about the operation in a declarative style. For example, the code generator can make some optimizations if you
declare that two input signals are commutative (they can be exchanged with one another). The main part of the .alg
file is the inner loop which is the heart of the signal processing code.

A.5 Writing a .alg File

WARNING: Translation relies heavily on string substitution, which

is fragile. In particular, variables with names that are substrings of other variables will cause problems. For example if
you declare STATE variables "phase" and "iphase", then the translator will globally substitute "phase_reg" for "phase",
converting "phase" to "phase_reg" and iphase" to "iphase_reg". Then it will substitute "iphase_reg" for iphase" which
will convert the existing "iphase_reg" to "iphase_reg_reg". This will be confusing and will not compile. (End of
WARNING)

To give you some idea how functions are specified, here is the specification for snd-prod, which generates over 250
lines of C code:

v 3.24 218

Nyquist Reference Manual Appendix A. Extending Nyquist

(PROD-ALG
(NAME "prod")
(ARGUMENTS ("sound_type" "s1") ("sound_type" "s2"))
(START (MAX s1 s2))
(COMMUTATIVE (s1 s2))
(INNER-LOOP "output = s1 * s2")
(LINEAR s1 s2)
(TERMINATE (MIN s1 s2))
(LOGICAL-STOP (MIN s1 s2))

)
A .alg file is always of the form:

(name
(attribute value)
(attribute value)
...

)
There should be just one of these algorithms descriptions per file. The name field is arbitrary: it is a Lisp symbol whose
property list is used to save the following attribute/value pairs. There are many attributes described below. For more
examples, see the .alg files in the trnsrc directory.

Understanding what the attributes do is not easy, so here are three recommendations for implementors. First, if there
is an existing Nyquist operator that is structurally similar to something you want to implement, make a copy of the
corresponding .alg file and work from there. In some cases, you can merely rename the parameters and substitute
a new inner loop. Second, read the generated code, especially the generated inner loop. It may not all make sense,
but sometimes you can spot obvious errors and work your way back to the error in the .alg file. Third, if you know
where something bad is generated, see if you can find where the code is generated. (The code generator files are listed
in init.lsp.) This code is poorly written and poorly documented, but in some cases it is fairly straightforward to
determine what attribute in the .alg file is responsible for the erroneous output.

A.6 Attributes

Here are the attributes used for code generation. Attributes and values may be specified in any order.

(NAME "string ")
specifies a base name for many identifiers. In particular, the generated filenames will be string.c and string.h,
and the XLisp function generated will be snd-string.

(ARGUMENTS arglist)
describes the arguments to be passed from XLisp. Arglist has the form: (type1 name1) (type2 name2)
..., where type and name are strings in double quotes, e.g. ("sound_type" "s") specifies a SOUND parameter
named s. Note that arglist is not surrounded by parentheses. As seen in this example, the type names and
parameter names are C identifiers. Since the parameters are passed in from XLisp, they must be chosen from
a restricted set. Valid type names are: "sound_type", "rate_type", "double", "long", "string", and
"LVAL".

v 3.24 219

Nyquist Reference Manual Appendix A. Extending Nyquist

(STATE statelist)
describes additional state (variables) needed to perform the computation. A statelist is similar to an arglist (see
ARGUMENTS above), and has the form: (type1 name1 init1 [TEMP]) (type2 name2 init2 [TEMP])
.... The types and names are as in arglist, and the "inits" are double-quoted initial values. Initial values may
be any C expression. State is initialized in the order implied by statelist when the operation is first called from
XLisp. If TEMP is omitted the state is preserved in a structure until the sound computation completes. Otherwise,
the state variable only exists at state initialization time.

(INNER-LOOP innerloop-code)
describes the inner loop, written as C code. The innerloop-code is in double quotes, and may extend over multiple
lines. To make generated code extra-beautiful, prefix each line of innerloop-code with 12 spaces. Temporary
variables should not be declared at the beginning of innerloop-code. Use the INNER-LOOP-LOCALS attribute
instead. Within innerloop-code, each ARGUMENT of type sound_type must be referenced exactly one time. If
you need to use a signal value twice, assign it once to a temporary and use the temporary twice. The inner loop
must also assign one time to the psuedo-variable output. The model here is that the name of a sound argument
denotes the value of the corresponding signal at the current output sample time. The inner loop code will be
called once for each output sample. In practice, the code generator will substitute some expression for each
signal name. For example, prod.alg specifies

(INNER-LOOP "output = s1 * s2")

(s1 and s2 are ARGUMENTS.) This expands to the following inner loop in prod.c:

*out_ptr_reg++ = *s1_ptr_reg++ * *s2_ptr_reg++;

In cases where arguments have different sample rates, sample interpolation is in-lined, and the expressions can
get very complex. The translator is currently very simple-minded about substituting access code in the place of
parameter names, and this is a frequent source of bugs. Simple string substitution is performed, so you must
not use a parameter or state name that is a substring of another. For example, if two sound parameters were
named s and s2, the translator might substitute for “s” in two places rather than one. If this problem occurs, you
will almost certainly get a C compiler syntax error. The fix is to use “more unique” parameter and state variable
names.

(INNER-LOOP-LOCALS "innerloop-code ")
The innerloop-code contains C declarations of local variables set and referenced in the inner loop.

(SAMPLE-RATE "expr ")
specifies the output sample rate; expr can be any C expression, including a parameter from the ARGUMENTS
list. You can also write (SAMPLE-RATE (MAX name1 name2 ...)) where names are unquoted names of
arguments.

(SUPPORT-HEADER "c-code ")
specifies arbitrary C code to be inserted in the generated .h file. The code typically contains auxiliarly function
declarations and definitions of constants.

(SUPPORT-FUNCTIONS "c-code ")
specifies arbitrary C code to be inserted in the generated .c file. The code typically contains auxiliarly functions
and definitions of constants.

v 3.24 220

Nyquist Reference Manual Appendix A. Extending Nyquist

(FINALIZATION "c-code ")
specifies code to execute when the sound has been fully computed and the state variables are about to be
decallocated. This is the place to deallocate buffer memory, etc.

(CONSTANT "name1 " "name2 " ...)
specifies state variables that do not change value in the inner loop. The values of state variables are loaded into
registers before entering the inner loop so that access will be fast within the loop. On exiting the inner loop, the
final register values are preserved in a “suspension” structure. If state values do not change in the inner loop, this
CONSTANT declaration can eliminate the overhead of storing these registers.

(START spec)
specifies when the output sound should start (a sound is zero and no processing is done before the start time).
The spec can take several forms: (MIN name1 name2 ...) means the start time is the minimum of the start
times of input signals name1, name2, Note that these names are not quoted.

(TERMINATE spec)
specifies when the output sound terminates (a sound is zero after this termination time and no more samples
are computed). The spec can take several forms: (MIN name1 name2 ...) means the terminate time is the
minimum of the terminate times of input arguments name1, name2, Note that these names are not quoted.
To terminate at the time of a single argument s1, specify (MIN s1). To terminate after a specific duration, use
(AFTER "c-expr "), where c-expr is a C variable or expression. To terminate at a particular time, use (AT
"c-expr "). spec may also be COMPUTED, which means to use the maximum sample rate of any input signal.

(LOGICAL-STOP spec)
specifies the logical stop time of the output sound. This spec is just like the one for TERMINATE. If no
LOGICAL-STOP attribute is present, the logical stop will coincide with the terminate time.

(ALWAYS-SCALE name1 name2 ...)
says that the named sound arguments (not in quotes) should always be multiplied by a scale factor. This is a
space-time tradeoff. When Nyquist sounds are scaled, the scale factor is merely stored in a structure. It is the
responsibility of the user of the samples to actually scale them (unless the scale factor is exactly 1.0). The default
is to generate code with and without scaling and to select the appropriate code at run time. If there are N signal
inputs, this will generate 2N versions of the code. To avoid this code explosion, use the ALWAYS-SCALE attribute.

(INLINE-INTERPOLATION flag)
controls when sample rate interpolation should be performed in-line in the inner loop. There are two forms
of sample rate interpolation. One is intended for use when the rate change is large and many points will be
interpolated. This form uses a divide instruction and some setup at the low sample rate, but the inner loop
overhead is just an add. The other form, intended for less drastic sample rate changes, performs interpolation
with 2 multiplies and several adds per sample at the high sample rate. If inline interpolation is enabled, Nyquist
generates various inner loops and selects the appropriate one at run-time. (This can cause a combinatorial
explosion if there are multiple sound arguments.) If inline interpolation is not enabled, much less code is
generated and interpolation is performed as necessary by instantiating a separate signal processing operation. The
value of flag is YES to generate inline interpolation, NO to disable inline interpolation, and NIL to take the default
set by the global variable *INLINE-INTERPOLATION*. The default is also taken if no INLINE-INTERPOLATION
attribute is specified.

(STEP-FUNCTION name1 name2 ...)
Normally all argument signals are linearly interpolated to the output sample rate. The linear interpolation can be
turned off with this attribute. This is used, for example, in Nyquist variable filters so that filter coefficients are
computed at low sample rates. In fact, this attribute was added for the special case of filters.

v 3.24 221

Nyquist Reference Manual Appendix A. Extending Nyquist

(DEPENDS spec1 spec2 ...)
Specifies dependencies. This attribute was also introduced to handle the case of filter coefficients (but may
have other applications.) Use it when a state variable is a function of a potentially low-sample-rate input where
the input is in the STEP-FUNCTION list. Consider a filter coefficient that depends upon an input signal such as
bandwidth. In this case, you want to compute the filter coefficient only when the input signal changes rather than
every output sample, since output may occur at a much higher sample rate. A spec is of the form

("name " "arg " "expr " [TEMP "type"])

which is interpreted as follows: name depends upon arg; when arg changes, recompute expr and assign it
to name. The name must be declared as a STATE variable unless TEMP is present, in which case name is not
preserved and is used only to compute other state. Variables are updated in the order of the DEPENDS list.

(FORCE-INTO-REGISTER name1 name2 ...)
causes name1, name2, ... to be loaded into registers before entering the inner loop. If the inner loop references a
state variable or argument, this happens automatically. Use this attribute only if references are “hidden” in a
#define’d macro or referenced in a DEPENDS specification.

(NOT-REGISTER name1 name2 ...)
specifies state and arguments that should not be loaded into registers before entering an inner loop. This is
sometimes an optimization for infrequently accessed state.

(NOT-IN-INNER-LOOP "name1 " "name2 " ...)
says that certain arguments are not used in the inner loop. Nyquist assumes all arguments are used in the inner
loop, so specify them here if not. For example, tables are passed into functions as sounds, but these sounds are
not read sample-by-sample in the inner loop, so they should be listed here.

(MAINTAIN ("name1 " "expr1 ") ("name2 " "expr2 ") ...)
Sometimes the IBM XLC compiler generates better loop code if a variable referenced in the loop is not referenced
outside of the loop after the loop exit. Technically, optimization is better when variables are dead upon loop exit.
Sometimes, there is an efficient way to compute the final value of a state variable without actually referencing
it, in which case the variable and the computation method are given as a pair in the MAINTAIN attribute. This
suppresses a store of the value of the named variable, making it a dead variable. Where the store would have
been, the expression is computed and assigned to the named variable. See partial.alg for an example. This
optimization is never necessary and is only for fine-tuning.

(LINEAR name1 name2 ...)
specifies that named arguments (without quotes) are linear with respect to the output. What this really means
is that it is numerically OK to eliminate a scale factor from the named argument and store it in the output
sound descriptor, avoiding a potential multiply in this inner loop. For example, both arguments to snd-prod
(signal multiplication) are “linear.” The inner loop has a single multiplication operator to multiply samples vs. a
potential 3 multiplies if each sample were also scaled. To handle scale factors on the input signals, the scale
factors are automatically multiplied and the product becomes the scale factor of the resulting output. (This
effectively “passes the buck” to some other, or perhaps more than one, signal processing function, which is not
always optimal. On the other hand, it works great if you multiply a number of scaled signals together: all the
scale factors are ultimately handled with a single multiply.)

(INTERNAL-SCALING name1 name2 ...)
indicates that scaling is handled in code that is hidden from the code generator for name1, name2, ..., which
are sound arguments. Although it is the responsibility of the reader of samples to apply any given scale factor,
sometimes scaling can be had for free. For example, the snd-recip operation computes the reciprocal of the
input samples by peforming a division. The simple approach would be to specify an inner loop of output =
1.0/s1, where s1 is the input. With scaling, this would generate an inner loop something like this:

v 3.24 222

Nyquist Reference Manual Appendix A. Extending Nyquist

*output++ = 1.0 / (s1_scale_factor * *s1++);

but a much better approach would be the following:

*output++ = my_scale_factor / *s1++

where my_scale_factor is initialized to 1.0 / s1->scale. Working backward from the desired inner loop
to the .alg inner loop specification, a first attempt might be to specify:

(INNER-LOOP "output = my_scale_factor / s1")

but this will generate the following:

*output++=my_scale_factor/(s1_scale_factor * *s1++);

Since the code generator does not know that scaling is handled elsewhere, the scaling is done twice! The solution
is to put s1 in the INTERNAL-SCALING list, which essentially means “I’ve already incorporated scaling into the
algorithm, so suppress the multiplication by a scale factor.”

(COMMUTATIVE (name1 name2 ...))
specifies that the results will not be affected by interchanging any of the listed arguments. When arguments
are commutative, Nyquist rearranges them at run-time into decreasing order of sample rates. If interpolation is
in-line, this can dramatically reduce the amount of code generated to handle all the different cases. The prime
example is prod.alg.

(TYPE-CHECK "code ")
specifies checking code to be inserted after argument type checking at initialization time. See downproto.alg
for an example where a check is made to guarantee that the output sample rate is not greater than the input
sample rate. Otherwise an error is raised.

A.7 Generated Names

The resulting .c file defines a number of procedures. The procedures that do actual sample computation are named
something like name_interp-spec_FETCH, where name is the NAME attribute from the .alg file, and interp-spec is an
interpolation specification composed of a string of the following letters: n, s, i, and r. One letter corresponds to each
sound argument, indicating no interpolation (r), scaling only (s), ordinary linear interpolation with scaling (i), and ramp
(incremental) interpolation with scaling (r). The code generator determines all the combinations of n, s, i, and r that are
necessary and generates a separate fetch function for each.

Another function is name_toss_fetch, which is called when sounds are not time-aligned and some initial samples
must be discarded from one or more inputs.

The function that creates a sound is snd_make_name. This is where state allocation and initialization takes place. The
proper fetch function is selected based on the sample rates and scale factors of the sound arguments, and a sound_type
is returned.

Since Nyquist is a functional language, sound operations are not normally allowed to modify their arguments through
side effects, but even reading samples from a sound_type causes side effects. To hide these from the Nyquist
programmer, sound_type arguments are first copied (this only copies a small structure. The samples themselves are on
a shared list). The function snd_name performs the necessary copies and calls snd_make_name. It is the snd_name
function that is called by XLisp. The XLisp name for the function is SND-NAME. Notice that the underscore in C is

v 3.24 223

Nyquist Reference Manual Appendix A. Extending Nyquist

converted to a dash in XLisp. Also, XLisp converts identifiers to upper case when they are read, so normally, you would
type snd-name to call the function.

A.8 Scalar Arguments

If you want the option of passing either a number (scalar) or a signal as one of the arguments, you have two choices,
neither of which is automated. Choice 1 is to coerce the constant into a signal from within XLisp. The naming
convention would be to DEFUN a new function named NAME or S-NAME for ordinary use. The NAME function tests
the arguments using XLisp functions such as TYPE-OF, NUMBERP, and SOUNDP. Any number is converted to a SOUND,
e.g. using CONST. Then SND-NAME is called with all sound arguments. The disadvantage of this scheme is that scalars
are expanded into a sample stream, which is slower than having a special inner loop where the scalar is simply kept in a
register, avoiding loads, stores, and addressing overhead.

Choice 2 is to generate a different sound operator for each case. The naming convention here is to append a string of
c’s and v’s, indicating constant (scalar) or variable (signal) inputs. For example, the reson operator comes in four
variations: reson, resoncv, resonvc, and resonvv. The resonvc version implements a resonating filter with a
variable center frequency (a sound type) and a constant bandwidth (a FLONUM). The RESON function in Nyquist is an
ordinary Lisp function that checks types and calls one of SND-RESON, SND-RESONCV, SND-RESONVC, or SND-RESONVV.

Since each of these SND- functions performs further selection of implementation based on sample rates and the need for
scaling, there are 25 different functions for computing RESON! So far, however, Nyquist is smaller than Common Lisp
and it’s about half the size of Microsoft Word. Hopefully, exponential growth in memory density will outpace linear (as
a function of programming effort) growth of Nyquist.

v 3.24 224

Appendix B Intgen

This documentation describes Intgen, a program for generating XLISP to C

interfaces. Intgen works by scanning .h files with special comments in them. Intgen builds stubs that implement XLISP
SUBR’s. When the SUBR is called, arguments are type-checked and passed to the C routine declared in the .h file.
Results are converted into the appropriate XLISP type and returned to the calling XLISP function. Intgen lets you add
C functions into the XLISP environment with very little effort.

B.1 Overview

The interface generator will take as command-line input:

• the name of the .c file to generate (do not include the .c extension; e.g. write xlexten, not xlexten.c);

• a list of .h files.

Alternatively, the command line may specify a command file from which to read file names. The command file name
should be preceded by "@", for example:

intgen @sndfns.cl

reads sndfns.cl to get the command-line input. Only one level of indirection is allowed.

The output is:

• a single .c file with one SUBR defined for each designated routine in a .h file.

• a .h file that declares each new C routine. E.g. if the .c file is named xlexten.c, this file will be named
xlextendefs.h;

• a .h file that extends the SUBR table used by Xlisp. E.g. if the .c file is named xlexten.c, then this file is
named xlextenptrs.h;

• a .lsp file with lisp initialization expressions copied from the .h files. This file is only generated if at least one
initialization expression is encountered.

For example, the command line

intgen seint ~setypes.h access.h

225

Nyquist Reference Manual Appendix B. Intgen

generates the file seint.c, using declarations in setypes.h and access.h. Normally, the .h files are included by
the generated file using #include commands. A ~ before a file means do not include the .h file. (This may be useful if
you extend xlisp.h, which will be included anyway). Also generated will be setintdefs.h and seintptrs.h.

B.1.1 Extending Xlisp

Any number of .h files may be named on the command line to Intgen, and Intgen will make a single .c file with
interface routines for all of the .h files. On the other hand, it is not necessary to put all of the extensions to Xlisp into a
single interface file. For example, you can run Intgen once to build interfaces to window manager routines, and again to
build interfaces to a new data type. Both interfaces can be linked into Xlisp.

To use the generated files, you must compile the .c files and link them with all of the standard Xlisp object files.
In addition, you must edit the file localdefs.h to contain an #include for each *defs.h file, and edit the file
localptrs.h to include each *ptrs.h file. For example, suppose you run Intgen to build soundint.c, fugueint.c,
and tableint.c. You would then edit localdefs.h to contain the following:

#include "soundintdefs.h"
#include "fugueintdefs.h"
#include "tableintdefs.h"

and edit localptrs.h to contain:

#include "soundintptrs.h"
#include "fugueintptrs.h"
#include "tableintptrs.h"

These localdefs.h and localptrs.h files are in turn included by xlftab.c which is where Xlisp builds a table of
SUBRs.

To summarize, building an interface requires just a few simple steps:

• Write C code to be called by Xlisp interface routines. This C code does the real work, and in most cases is
completely independent of Xlisp.

• Add comments to .h files to tell Intgen which routines to build interfaces to, and to specify the types of the
arguments.

• Run Intgen to build interface routines.

• Edit localptrs.h and localdefs.h to include generated .h files.

• Compile and link Xlisp, including the new C code.

B.2 Header file format

Each routine to be interfaced with Xlisp must be declared as follows:

type-name routine-name (); /* LISP: (func-name type1 type2 ...) */

v 3.24 226

Nyquist Reference Manual Appendix B. Intgen

The comment may be on the line following the declaration, but the declaration and the comment must each be on
no more than one line. The characters LISP: at the beginning of the comment mark routines to put in the interface.
The comment also gives the type and number of arguments. The function, when accessed from lisp will be known as
func-name, which need not bear any relationship to routine-name. By convention, underscores in the C routine-name
should be converted to dashes in func-name, and func-name should be in all capitals. None of this is enforced or
automated though.

Legal type_names are:

LVAL
returns an Xlisp datum.

atom_type
equivalent to LVAL, but the result is expected to be an atom.

value_type
a value as used in Dannenberg’s score editor.

event_type
an event as used in Dannenberg’s score editor.

int
interface will convert int to Xlisp FIXNUM.

boolean
interface will convert int to T or nil.

float or double
interface converts to FLONUM.

char * or string or string_type
interface converts to STRING. The result string will be copied into the XLISP heap.

void
interface will return nil.

It is easy to extend this list. Any unrecognized type will be coerced to an int and then returned as a FIXNUM, and a
warning will be issued.

The “*” after char must be followed by routine-name with no intervening space.

Parameter types may be any of the following:

FIXNUM
C routine expects an int.

FLONUM or FLOAT
C routine expects a double.

STRING
C routine expects char *, the string is not copied.

VALUE
C routine expects a value_type. (Not applicable to Fugue.)

EVENT
C routine expects an event_type. (Not applicable to Fugue.)

v 3.24 227

Nyquist Reference Manual Appendix B. Intgen

ANY
C routine expects LVAL.

ATOM
C routine expects LVAL which is a lisp atom.

FILE
C routine expects FILE *.

SOUND
C routine expects a SoundPtr.

Any of these may be followed by “*”: FIXNUM*, FLONUM*, STRING*, ANY*, FILE*, indicating C routine expects int
*, double *, char **, LVAL *, or FILE ** . This is basically a mechanism for returning more than one value, not a
mechanism for clobbering XLisp values. In this spirit, the interface copies the value (an int, double, char *, LVAL,
or FILE *) to a local variable and passes the address of that variable to the C routine. On return, a list of resulting “*”
parameters is constructed and bound to the global XLisp symbol *RSLT*. (Strings are copied.) If the C routine is void,
then the result list is also returned by the corresponding XLisp function.

Note 1: this does not support C routines like strcpy that modify strings, because the C routine gets a pointer to the string
in the XLisp heap. However, you can always add an intermediate routine that allocates space and then calls strcpy, or
whatever.

Note 2: it follows that a new XLisp STRING will be created for each STRING* parameter.

Note 3: putting results on a (global!) symbol seems a bit unstructured, but note that one could write a multiple-value
binding macro that hides this ugliness from the user if desired. In practice, I find that pulling the extra result values
from *RSLT* when needed is perfectly acceptable.

For parameters that are result values only, the character “ˆ” may be substituted for “*”. In this case, the parameter is not
to be passed in the XLisp calling site. However, the address of an initialized local variable of the given type is passed to
the corresponding C function, and the resulting value is passed back through *RSLT* as ordinary result parameter as
described above. The local variables are initialized to zero or NULL.

B.3 Using #define’d macros

If a comment of the form:

/* LISP: type-name (routine-name-2 type-1 type-2 ...) */

appears on a line by itself and there was a #define on the previous line, then the preceding #define is treated as a C
routine, e.g.

#define leftshift(val, count) ((val) << (count))
/* LISP: int (LOGSHIFT INT INT) */

will implement the LeLisp function LOGSHIFT.

The type-name following “LISP:” should have no spaces, e.g. use ANY*, not ANY *.

v 3.24 228

Nyquist Reference Manual Appendix B. Intgen

B.4 Lisp Include Files

Include files often define constants that we would like to have around in the Lisp world, but which are easier to initialize
just by loading a text file. Therefore, a comment of the form:

/* LISP-SRC: (any lisp expression) */

will cause Intgen to open a file name.lsp and append

(any lisp expression)

to name.lsp, where name is the interface name passed on the command line. If none of the include files examined
have comments of this form, then no name.lsp file is generated. Note: the LISP-SRC comment must be on a new line.

B.5 Example

This file was used for testing Intgen. It uses a trick (ok, it’s a hack) to interface to a standard library macro (tolower).
Since tolower is already defined, the macro ToLower is defined just to give Intgen a name to call. Two other routines,
strlen and tough, are interfaced as well.

/* igtest.h -- test interface for intgen */

#define ToLower(c) tolower(c)
/* LISP: int (TOLOWER FIXNUM) */

int strlen(); /* LISP: (STRLEN STRING) */

void tough();
/* LISP: (TOUGH FIXNUM* FLONUM* STRING ANY FIXNUM) */

B.6 More Details

Intgen has some compiler switches to enable/disable the use of certain types, including VALUE and EVENT types used
by Dannenberg’s score editing work, the SOUND type used by Fugue, and DEXT and SEXT types added for Dale Amon.
Enabling all of these is not likely to cause problems, and the chances of an accidental use of these types getting through
the compiler and linker seems very small.

v 3.24 229

Appendix C XLISP: An Object-oriented Lisp

Version 2.0

February 6, 1988

by
David Michael Betz

127 Taylor Road
Peterborough, NH 03458

Copyright (c) 1988, by David Michael Betz
All Rights Reserved

Permission is granted for unrestricted non-commercial use

C.1 Introduction

XLISP is an experimental programming language combining some of the features of Common Lisp with an object-
oriented extension capability. It was implemented to allow experimentation with object-oriented programming on small
computers.

Implementations of XLISP run on virtually every operating system. XLISP is completely written in the programming
language C and is easily extended with user written built-in functions and classes. It is available in source form to
non-commercial users.

Many Common Lisp functions are built into XLISP. In addition, XLISP defines the objects Object and Class as
primitives. Object is the only class that has no superclass and hence is the root of the class hierarchy tree. Class is the
class of which all classes are instances (it is the only object that is an instance of itself).

This document is a brief description of XLISP. It assumes some knowledge of LISP and some understanding of the
concepts of object-oriented programming.

I recommend the book Lisp by Winston and Horn and published by Addison Wesley for learning Lisp. The first edition
of this book is based on MacLisp and the second edition is based on Common Lisp.

You will probably also need a copy of Common Lisp: The Language by Guy L. Steele, Jr., published by Digital Press to
use as a reference for some of the Common Lisp functions that are described only briefly in this document.

230

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

C.2 A Note From The Author

If you have any problems with XLISP, feel free to contact me [me being David Betz - RBD] for help or advice. Please
remember that since XLISP is available in source form in a high level language, many users [e.g. that Dannenberg
fellow - RBD] have been making versions available on a variety of machines. If you call to report a problem with a
specific version, I may not be able to help you if that version runs on a machine to which I don’t have access. Please
have the version number of the version that you are running readily accessible before calling me.

If you find a bug in XLISP, first try to fix the bug yourself using the source code provided. If you are successful in
fixing the bug, send the bug report along with the fix to me. If you don’t have access to a C compiler or are unable to fix
a bug, please send the bug report to me and I’ll try to fix it.

Any suggestions for improvements will be welcomed. Feel free to extend the language in whatever way suits your needs.
However, PLEASE DO NOT RELEASE ENHANCED VERSIONS WITHOUT CHECKING WITH ME FIRST!! I
would like to be the clearing house for new features added to XLISP. If you want to add features for your own personal
use, go ahead. But, if you want to distribute your enhanced version, contact me first. Please remember that the goal
of XLISP is to provide a language to learn and experiment with LISP and object-oriented programming on small
computers. I don’t want it to get so big that it requires megabytes of memory to run.

C.3 XLISP Command Loop

When XLISP is started, it first tries to load the workspace xlisp.wks from the current directory. If that file doesn’t
exist, XLISP builds an initial workspace, empty except for the built-in functions and symbols.

Then XLISP attempts to load init.lsp from the current directory. It then loads any files named as parameters on the
command line (after appending .lsp to their names).

XLISP then issues the following prompt:

>

This indicates that XLISP is waiting for an expression to be typed.

When a complete expression has been entered, XLISP attempts to evaluate that expression. If the expression evaluates
successfully, XLISP prints the result and then returns to the initial prompt waiting for another expression to be typed.

C.4 Special Characters

When XLISP is running from a console, some control characters invoke operations:

• Backspace and Delete characters erase the previous character on the input line (if any).

• Control-U erases the entire input line.

• Control-C executes the TOP-LEVEL function.

• Control-G executes the CLEAN-UP function.

• Control-P executes the CONTINUE function.

v 3.24 231

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

• Control-B stops execution and enters the break command loop. Execution can be continued by typing Control-P
or (CONTINUE).

• Control-E turns on character echoing (Linux and Mac OS X only).

• Control-F turns off character echoing (Linux and Mac OS X only).

• Control-T evaluates the INFO function.

C.5 Break Command Loop

When XLISP encounters an error while evaluating an expression, it attempts to handle the error in the following way:

If the symbol *breakenable* is true, the message corresponding to the error is printed. If the error is correctable, the
correction message is printed.

If the symbol *tracenable* is true, a trace back is printed. The number of entries printed depends on the value of the
symbol *tracelimit*. If this symbol is set to something other than a number, the entire trace back stack is printed.

XLISP then enters a read/eval/print loop to allow the user to examine the state of the interpreter in the context of the
error. This loop differs from the normal top-level read/eval/print loop in that if the user invokes the function continue,
XLISP will continue from a correctable error. If the user invokes the function clean-up, XLISP will abort the break
loop and return to the top level or the next lower numbered break loop. When in a break loop, XLISP prefixes the break
level to the normal prompt.

If the symbol *breakenable* is nil, XLISP looks for a surrounding errset function. If one is found, XLISP examines
the value of the print flag. If this flag is true, the error message is printed. In any case, XLISP causes the errset function
call to return nil.

If there is no surrounding errset function, XLISP prints the error message and returns to the top level.

C.6 Data Types

There are several different data types available to XLISP programmers.

• lists - are linked lists of cons cells, where a cons cell is a pair of references called the car or head and cdr or
tail. The empty list is the null reference denoted by nil. (There is no cons cell.) A list of 1 element is a cons
cell whose car is the element and whose cdr is a list of no elements, i.e. nil. A list of 2 elements is a cons cell
whose car is the first element and whose cdr is a list containing the second element, and so on.

• symbols - unique strings that serve as names of variables and names of functions. All symbols are in a global
symbol table.

• strings - non-unique, immutable character strings.

• integers

• characters - note that characters are not strings.

• floats

v 3.24 232

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

• objects

• arrays

• streams

• subrs (built-in functions)

• fsubrs (special forms)

• closures (user defined functions)

C.7 The Evaluator

The process of evaluation in XLISP:

• Strings, integers, characters, floats, objects, arrays, streams, subrs, fsubrs and closures evaluate to themselves.

• Symbols act as variables and are evaluated by retrieving the value associated with their current binding.

• Lists are evaluated by examining the first element of the list and then taking one of the following actions:

– If it is a symbol, the functional binding of the symbol is retrieved.

– If it is a lambda expression, a closure is constructed for the function described by the lambda expression.

– If it is a subr, fsubr or closure, it stands for itself.

– Any other value is an error.

Then, the value produced by the previous step is examined:

– If it is a subr or closure, the remaining list elements are evaluated and the subr or closure is called with
these evaluated expressions as arguments.

– If it is an fsubr, the fsubr is called using the remaining list elements as arguments (unevaluated).

– If it is a macro, the macro is expanded using the remaining list elements as arguments (unevaluated). The
macro expansion is then evaluated in place of the original macro call.

C.8 Lexical Conventions

The following conventions must be followed when entering XLISP programs:

Comments in XLISP code begin with a semi-colon character and continue to the end of the line.

Symbol names in XLISP can consist of any sequence of non-blank printable characters except the following:

() ' ` , " ;

v 3.24 233

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

Uppercase and lowercase characters are not distinguished within symbol names. All lowercase characters are mapped
to uppercase on input.

Integer literals consist of a sequence of digits optionally beginning with a + or -. The range of values an integer can
represent is limited by the size of a C long on the machine on which XLISP is running.

Floating point literals consist of a sequence of digits optionally beginning with a + or - and including an embedded
decimal point. The range of values a floating point number can represent is limited by the size of a C float (double
on machines with 32 bit addresses) on the machine on which XLISP is running.

Literal strings are sequences of characters surrounded by double quotes. Within quoted strings the “\” character is used
to allow non-printable characters to be included. The codes recognized are:

• \\ means the character “\”

• \n means newline

• \t means tab

• \r means return

• \f means form feed

• \nnn means the character whose octal code is nnn

C.9 Readtables

The behavior of the reader is controlled by a data structure called a readtable. The reader uses the symbol *readtable*
to locate the current readtable. This table controls the interpretation of input characters. It is an array with 128 entries,
one for each of the ASCII character codes. Each entry contains one of the following things:

• NIL – Indicating an invalid character

• :CONSTITUENT – Indicating a symbol constituent

• :WHITE-SPACE – Indicating a whitespace character

• (:TMACRO . fun) – Terminating readmacro

• (:NMACRO . fun) – Non-terminating readmacro

• :SESCAPE – Single escape character (’\’)

• :MESCAPE – Multiple escape character (’|’)

In the case of :TMACRO and :NMACRO, the fun component is a function. This can either be a built-in readmacro function
or a lambda expression. The function should take two parameters. The first is the input stream and the second is the
character that caused the invocation of the readmacro. The readmacro function should return NIL to indicate that the
character should be treated as white space or a value consed with NIL to indicate that the readmacro should be treated
as an occurence of the specified value. Of course, the readmacro code is free to read additional characters from the
input stream.

XLISP defines several useful read macros:

v 3.24 234

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

• ’<expr> == (quote <expr>)

• #’<expr> == (function <expr>)

• #(<expr>...) == an array of the specified expressions

• #x<hdigits> == a hexadecimal number (0-9,A-F)

• #o<odigits> == an octal number (0-7)

• #b<bdigits> == a binary number (0-1)

• #\<char> == literal of type character

• #\Newline == newline character

• #\Space == space character

• #\Tab == tab character

• #| ... |# == a comment

• #:<symbol> == an uninterned symbol

• ‘<expr> == (backquote <expr>)

• ,<expr> == (comma <expr>)

• ,@<expr> == (comma-at <expr>)

C.10 Lambda Lists

There are several forms in XLISP that require that a “lambda list” be specified. A lambda list is a definition of the
arguments accepted by a function. There are four different types of arguments.

The lambda list starts with required arguments. Required arguments must be specified in every call to the function.

The required arguments are followed by the &optional arguments. Optional arguments may be provided or omitted
in a call. An initialization expression may be specified to provide a default value for an &optional argument if it is
omitted from a call. If no initialization expression is specified, an omitted argument is initialized to NIL. It is also
possible to provide the name of a supplied-p variable that can be used to determine if a call provided a value for the
argument or if the initialization expression was used. If specified, the supplied- p variable will be bound to T if a value
was specified in the call and NIL if the default value was used.

The &optional arguments are followed by the &rest argument. The &rest argument gets bound to the remainder of
the argument list after the required and &optional arguments have been removed.

The &rest argument is followed by the &key arguments. When a keyword argument is passed to a function, a pair of
values appears in the argument list. The first expression in the pair should evaluate to a keyword symbol (a symbol
that begins with a “:”). The value of the second expression is the value of the keyword argument. Like &optional
arguments, &key arguments can have initialization expressions and supplied-p variables. In addition, it is possible to
specify the keyword to be used in a function call. If no keyword is specified, the keyword obtained by adding a “:” to
the beginning of the keyword argument symbol is used. In other words, if the keyword argument symbol is foo, the
keyword will be :foo.

v 3.24 235

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

The &key arguments are followed by the &aux variables. These are local variables that are bound during the evaluation
of the function body. It is possible to have initialization expressions for the &aux variables.

Here is the complete syntax for lambda lists:

(rarg...
[&optional [oarg | (oarg [init [svar]])]...]
[&rest rarg]
[&key
[karg | ([karg | (key karg)] [init [svar]])]...
&allow-other-keys]
[&aux
[aux | (aux [init])]...])
where:
rarg is a required argument symbol
oarg is an &optional argument symbol
rarg is the &rest argument symbol
karg is a &key argument symbol
key is a keyword symbol
aux is an auxiliary variable symbol
init is an initialization expression
svar is a supplied-p variable symbol

C.11 Objects

Definitions:

• selector – a symbol used to select an appropriate method

• message – a selector and a list of actual arguments

• method – the code that implements a message

Since XLISP was created to provide a simple basis for experimenting with object-oriented programming, one of the
primitive data types included is object. In XLISP, an object consists of a data structure containing a pointer to the
object’s class as well as an array containing the values of the object’s instance variables.

Officially, there is no way to see inside an object (look at the values of its instance variables). The only way to
communicate with an object is by sending it a message.

You can send a message to an object using the send function. This function takes the object as its first argument,
the message selector as its second argument (which must be a symbol) and the message arguments as its remaining
arguments.

The send function determines the class of the receiving object and attempts to find a method corresponding to the
message selector in the set of messages defined for that class. If the message is not found in the object’s class and
the class has a super-class, the search continues by looking at the messages defined for the super-class. This process

v 3.24 236

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

continues from one super-class to the next until a method for the message is found. If no method is found, an error
occurs.

When a method is found, the evaluator binds the receiving object to the symbol self and evaluates the method using
the remaining elements of the original list as arguments to the method. These arguments are always evaluated prior to
being bound to their corresponding formal arguments. The result of evaluating the method becomes the result of the
expression.

Within the body of a method, a message can be sent to the current object by calling the (send self ...). The method
lookup starts with the object’s class regardless of the class containing the current method.

Sometimes it is desirable to invoke a general method in a superclass even when it is overridden by a more specific
method in a subclass. This can be accomplished by calling send-super, which begins the method lookup in the
superclass of the class defining the current method rather than in the class of the current object.

The send-super function takes a selector as its first argument (which must be a symbol) and the message arguments as
its remaining arguments. Notice that send-super can only be sent from within a method, and the target of the message
is always the current object (self). (send-super ...) is similar to (send self ...) except that method lookup
begins in the superclass of the class containing the current method rather than the class of the current object.

C.12 The “Object” Class

Object – the top of the class hierarchy.

Messages:

:show – show an object’s instance variables.
returns – the object

:class – return the class of an object
returns – the class of the object

:isa class – test if object inherits from class
returns – t if object is an instance of class or a subclass of class, otherwise nil

:isnew – the default object initialization routine
returns – the object

C.13 The “Class” Class

Class – class of all object classes (including itself)

Messages:

:new – create a new instance of a class
returns – the new class object

v 3.24 237

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

:isnew ivars [cvars [super]] – initialize a new class
ivars – the list of instance variable symbols
cvars – the list of class variable symbols
super – the superclass (default is object)
returns – the new class object

:answer msg fargs code – add a message to a class
msg – the message symbol
fargs – the formal argument list (lambda list)
code – a list of executable expressions
returns – the object

When a new instance of a class is created by sending the message :new to an existing class, the message :isnew
followed by whatever parameters were passed to the :new message is sent to the newly created object.

When a new class is created by sending the :new message to the object Class, an optional parameter may be specified
indicating the superclass of the new class. If this parameter is omitted, the new class will be a subclass of Object. A
class inherits all instance variables, class variables, and methods from its super-class.

C.14 Profiling

The Xlisp 2.0 release has been extended with a profiling facility, which counts how many times and where eval is
executed. A separate count is maintained for each named function, closure, or macro, and a count indicates an eval in
the immediately (lexically) enclosing named function, closure, or macro. Thus, the count gives an indication of the
amount of time spent in a function, not counting nested function calls. The list of all functions executed is maintained
on the global *profile* variable. These functions in turn have *profile* properties, which maintain the counts.
The profile system merely increments counters and puts symbols on the *profile* list. It is up to the user to initialize
data and gather results. Profiling is turned on or off with the profile function. Unfortunately, methods cannot be
profiled with this facility.

C.15 Symbols

• self - the current object (within a method context)

• *obarray* - the object hash table

• *standard-input* - the standard input stream

• *standard-output* - the standard output stream

• *error-output* - the error output stream

• *trace-output* - the trace output stream

• *debug-io* - the debug i/o stream

• *breakenable* - flag controlling entering break loop on errors

• *tracelist* - list of names of functions to trace

v 3.24 238

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

• *tracenable* - enable trace back printout on errors

• *tracelimit* - number of levels of trace back information

• *evalhook* - user substitute for the evaluator function

• *applyhook* - (not yet implemented)

• *readtable* - the current readtable

• *unbound* - indicator for unbound symbols

• *gc-flag* - controls the printing of gc messages

• *gc-hook* - function to call after garbage collection

• *integer-format* - format for printing integers (“%d” or “%ld”)

• *float-format* - format for printing floats (“%g”)

• *print-case* - symbol output case (:upcase or :downcase)

There are several symbols maintained by the read/eval/print loop. The symbols +, ++, and +++ are bound to the most
recent three input expressions. The symbols *, ** and *** are bound to the most recent three results. The symbol - is
bound to the expression currently being evaluated. It becomes the value of + at the end of the evaluation.

C.16 Evaluation Functions

eval(expr) [SAL]
(eval expr) [LISP] – evaluate an xlisp expression

expr – the expression to be evaluated
returns – the result of evaluating the expression

apply(fun, args) [SAL]
(apply fun args) [LISP] – apply a function to a list of arguments

fun – the function to apply (or function symbol)
args – the argument list
returns – the result of applying the function to the arguments

funcall(fun, arg ...) [SAL]
(funcall fun arg ...) [LISP] – call a function with arguments

fun – the function to call (or function symbol)
arg – arguments to pass to the function
returns – the result of calling the function with the arguments

quote(expr) [SAL]
(quote expr) [LISP] – return an expression unevaluated

expr – the expression to be quoted (quoted)
returns – expr unevaluated

(function expr) [LISP] – get the functional interpretation. Note that in SAL, the function can be accessed as
#function.

expr – the symbol or lambda expression (quoted)
returns – the functional interpretation

v 3.24 239

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

backquote(expr) [SAL]
(backquote expr) [LISP] – fill in a template

expr – the template
returns – a copy of the template with comma and comma-at
expressions expanded

lambda(args, expr ...) [SAL]
(lambda args expr ...) [LISP] – make a function closure

args – formal argument list (lambda list) (quoted)
expr – expressions of the function body
returns – the function closure

get-lambda-expression(closure) [SAL]
(get-lambda-expression closure) [LISP] – get the lambda expression

closure – the closure
returns – the original lambda expression

macroexpand(form) [SAL]
(macroexpand form) [LISP] – recursively expand macro calls

form – the form to expand
returns – the macro expansion

macroexpand-1(form) [SAL]
(macroexpand-1 form) [LISP] – expand a macro call

form – the macro call form
returns – the macro expansion

C.17 Symbol Functions

(set sym expr) [LISP] – set the value of a symbol. Note that in SAL, the function can be accessed as #set.
sym – the symbol being set
expr – the new value
returns – the new value

setq([sym, expr] ...) [SAL]
(setq [sym expr] ...) [LISP] – set the value of a symbol. Note that in SAL, the set command is normally
used.

sym – the symbol being set (quoted)
expr – the new value
returns – the new value

psetq([sym, expr] ...) [SAL]
(psetq [sym expr] ...) [LISP] – parallel version of setq

sym – the symbol being set (quoted)
expr – the new value
returns – the new value

setf([place, expr] ...) [SAL]
(setf [place expr] ...) [LISP] – set the value of a field

place – the field specifier (quoted):
sym – set value of a symbol

v 3.24 240

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

(car expr) – set car of a cons node
(cdr expr) – set cdr of a cons node
(nth n expr) – set nth car of a list
(aref expr n) – set nth element of an array
(get sym prop) – set value of a property
(symbol-value sym) – set value of a symbol
(symbol-function sym) – set functional value of a symbol
(symbol-plist sym) – set property list of a symbol

expr – the new value
returns – the new value

(defun sym fargs expr ...) [LISP] – define a function
(defmacro sym fargs expr ...) [LISP] – define a macro

sym – symbol being defined (quoted)
fargs – formal argument list (lambda list) (quoted)
expr – expressions constituting the body of the
function (quoted) returns – the function symbol

gensym([tag]) [SAL]
(gensym [tag]) [LISP] – generate a symbol

tag – string or number
returns – the new symbol

intern(pname) [SAL]
(intern pname) [LISP] – make an interned symbol

pname – the symbol’s print name string
returns – the new symbol

make-symbol(pname) [SAL]
(make-symbol pname) [LISP] – make an uninterned symbol

pname – the symbol’s print name string
returns – the new symbol

symbol-name(sym) [SAL]
(symbol-name sym) [LISP] – get the print name of a symbol

sym – the symbol
returns – the symbol’s print name

symbol-value(sym) [SAL]
(symbol-value sym) [LISP] – get the value of a symbol

sym – the symbol
returns – the symbol’s value

symbol-function(sym) [SAL]
(symbol-function sym) [LISP] – get the functional value of a symbol

sym – the symbol
returns – the symbol’s functional value

symbol-plist(sym) [SAL]
(symbol-plist sym) [LISP] – get the property list of a symbol

sym – the symbol
returns – the symbol’s property list

v 3.24 241

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

hash(sym, n) [SAL]
(hash sym n) [LISP] – compute the hash index for a symbol

sym – the symbol or string
n – the table size (integer)
returns – the hash index (integer)

C.18 Property List Functions

get(sym, prop) [SAL]
(get sym prop) [LISP] – get the value of a property

sym – the symbol
prop – the property symbol
returns – the property value or nil

putprop(sym, val, prop) [SAL]
(putprop sym val prop) [LISP] – put a property onto a property list

sym – the symbol
val – the property value
prop – the property symbol
returns – the property value

remprop(sym, prop) [SAL]
(remprop sym prop) [LISP] – remove a property

sym – the symbol
prop – the property symbol
returns – nil

C.19 Array Functions

aref(array, n) [SAL]
(aref array n) [LISP] – get the nth element of an array

array – the array
n – the array index (integer)
returns – the value of the array element

make-array(size) [SAL]
(make-array size) [LISP] – make a new array

size – the size of the new array (integer)
returns – the new array

vector(expr ...) [SAL]
(vector expr ...) [LISP] – make an initialized vector

expr – the vector elements
returns – the new vector

v 3.24 242

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

C.20 List Functions

car(expr) [SAL]
(car expr) [LISP] – return the car of a list node

expr – the list node
returns – the car of the list node

cdr(expr) [SAL]
(cdr expr) [LISP] – return the cdr of a list node

expr – the list node
returns – the cdr of the list node

cxx r(expr) [SAL]
(cxx r expr) [LISP] – all cxxr combinations
cxxx r(expr) [SAL]
(cxxx r expr) [LISP] – all cxxxr combinations
cxxxx r(expr) [SAL]
(cxxxx r expr) [LISP] – all cxxxxr combinations
first(expr) [SAL]
(first expr) [LISP] – a synonym for car
second(expr) [SAL]
(second expr) [LISP] – a synonym for cadr
third(expr) [SAL]
(third expr) [LISP] – a synonym for caddr
fourth(expr) [SAL]
(fourth expr) [LISP] – a synonym for cadddr
rest(expr) [SAL]
(rest expr) [LISP] – a synonym for cdr
cons(expr1, expr2) [SAL]
(cons expr1 expr2) [LISP] – construct a new list node

expr1 – the car of the new list node
expr2 – the cdr of the new list node
returns – nil

list(expr ...) [SAL]
(list expr ...) [LISP] – create a list of values

expr – expressions to be combined into a list
returns – the new list

append(expr ...) [SAL]
(append expr ...) [LISP] – append lists

expr – lists whose elements are to be appended
returns – the new list

reverse(expr) [SAL]
(reverse expr) [LISP] – reverse a list

expr – the list to reverse
returns – a new list in the reverse order

last(list) [SAL]
(last list) [LISP] – return the last list node of a list

list – the list
returns – the last list node in the list

v 3.24 243

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

member(expr, list, test: test, test-not: test-not) [SAL]
(member expr list &key :test :test-not) [LISP] – find an expression in a list

expr – the expression to find
list – the list to search
:test – the test function (defaults to eql)
:test-not – the test function (sense inverted)
returns – the remainder of the list starting with the expression

assoc(expr, alist, test: test, test-not: test-not) [SAL]
(assoc expr alist &key :test :test-not) [LISP] – find an expression in an a-list

expr – the expression to find
alist – the association list
:test – the test function (defaults to eql)
:test-not – the test function (sense inverted)
returns – the alist entry or nil

remove(expr, list, test: test, test-not: test-not) [SAL]
(remove expr list &key :test :test-not) [LISP] – remove elements from a list

expr – the element to remove
list – the list
:test – the test function (defaults to eql)
:test-not – the test function (sense inverted)
returns – copy of list with matching expressions removed

remove-if(test, list) [SAL]
(remove-if test list) [LISP] – remove elements that pass test

test – the test predicate
list – the list
returns – copy of list with matching elements removed

remove-if-not(test, list) [SAL]
(remove-if-not test list) [LISP] – remove elements that fail test

test – the test predicate
list – the list
returns – copy of list with non-matching elements removed

length(expr) [SAL]
(length expr) [LISP] – find the length of a list, vector or string

expr – the list, vector or string
returns – the length of the list, vector or string

nth(n, list) [SAL]
(nth n list) [LISP] – return the nth element of a list

n – the number of the element to return (zero origin)
list – the list
returns – the nth element or nil if the list isn’t that long

nthcdr(n, list) [SAL]
(nthcdr n list) [LISP] – return the nth cdr of a list

n – the number of the element to return (zero origin)
list – the list
returns – the nth cdr or nil if the list isn’t that long

v 3.24 244

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

mapc(fcn, list1, list ...) [SAL]
(mapc fcn list1 list ...) [LISP] – apply function to successive cars

fcn – the function or function name
listn – a list for each argument of the function
returns – the first list of arguments

mapcar(fcn, list1, list ...) [SAL]
(mapcar fcn list1 list ...) [LISP] – apply function to successive cars

fcn – the function or function name
listn – a list for each argument of the function
returns – a list of the values returned

mapl(fcn, list1, list ...) [SAL]
(mapl fcn list1 list ...) [LISP] – apply function to successive cdrs

fcn – the function or function name
listn – a list for each argument of the function
returns – the first list of arguments

maplist(fcn, list1, list ...) [SAL]
(maplist fcn list1 list ...) [LISP] – apply function to successive cdrs

fcn – the function or function name
listn – a list for each argument of the function
returns – a list of the values returned

subst(to, from, expr, test: test, test-not: test-not) [SAL]
(subst to from expr &key :test :test-not) [LISP] – substitute expressions

to – the new expression
from – the old expression
expr – the expression in which to do the substitutions
:test – the test function (defaults to eql)
:test-not – the test function (sense inverted)
returns – the expression with substitutions

sublis(alist, expr, test: test, test-not: test-not) [SAL]
(sublis alist expr &key :test :test-not) [LISP] – substitute with an a-list

alist – the association list
expr – the expression in which to do the substitutions
:test – the test function (defaults to eql)
:test-not – the test function (sense inverted)
returns – the expression with substitutions

C.21 Destructive List Functions

rplaca(list, expr) [SAL]
(rplaca list expr) [LISP] – replace the car of a list node

list – the list node
expr – the new value for the car of the list node
returns – the list node after updating the car

v 3.24 245

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

rplacd(list, expr) [SAL]
(rplacd list expr) [LISP] – replace the cdr of a list node

list – the list node
expr – the new value for the cdr of the list node
returns – the list node after updating the cdr

nconc(list ...) [SAL]
(nconc list ...) [LISP] – destructively concatenate lists

list – lists to concatenate
returns – the result of concatenating the lists

delete(expr, list, test: test, test-not: test-not) [SAL]
(delete expr list &key :test :test-not) [LISP] – delete elements from a list

expr – the element to delete
list – the list
:test – the test function (defaults to eql)
:test-not – the test function (sense inverted)
returns – the list with the matching expressions deleted

delete-if(test, list) [SAL]
(delete-if test list) [LISP] – delete elements that pass test

test – the test predicate
list – the list
returns – the list with matching elements deleted

delete-if-not(test, list) [SAL]
(delete-if-not) test list) [LISP] – delete elements that fail test

test – the test predicate
list – the list
returns – the list with non-matching elements deleted

sort(list, test) [SAL]
(sort list test) [LISP] – sort a list

list – the list to sort
test – the comparison function
returns – the sorted list
Note: The comparison function should have two parameters and return true if the first parameter should come
before the second parameter in the sorted result. For a list of numbers, built-in comparison functions can be
used, e.g. (sort ’(3 2 1) #’<) returns (1 2 3). To sort a list of lists by the first element of each list, you
can write a function to access the keys and compare them, e.g. (sort ’((3 c) (2 b) (1 a)) #’(lambda (x
y) (< (car x) (car y)))) returns ((1 A) (2 B) (3 C)). In SAL, you could write function my-sort(a, b)
return first(a) < first(b) print sort({{3 c} {2 b} {1 a}}, quote(my-sort)), which will print {{1
A} {2 B} {3 C}}.

C.22 Predicate Functions

atom(expr) [SAL]
(atom expr) [LISP] – is this an atom?

expr – the expression to check
returns – t if the value is an atom, nil otherwise

v 3.24 246

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

symbolp(expr) [SAL]
(symbolp expr) [LISP] – is this a symbol?

expr – the expression to check
returns – t if the expression is a symbol, nil otherwise

numberp(expr) [SAL]
(numberp expr) [LISP] – is this a number?

expr – the expression to check
returns – t if the expression is a number, nil otherwise

null(expr) [SAL]
(null expr) [LISP] – is this an empty list?

expr – the list to check
returns – t if the list is empty, nil otherwise

not(expr) [SAL]
(not expr) [LISP] – is this false?

expr – the expression to check
return – t if the value is nil, nil otherwise

listp(expr) [SAL]
(listp expr) [LISP] – is this a list?

expr – the expression to check
returns – t if the value is a cons or nil, nil otherwise

endp(list) [SAL]
(endp list) [LISP] – is this the end of a list

list – the list
returns – t if the value is nil, nil otherwise

consp(expr) [SAL]
(consp expr) [LISP] – is this a non-empty list?

expr – the expression to check
returns – t if the value is a cons, nil otherwise

integerp(expr) [SAL]
(integerp expr) [LISP] – is this an integer?

expr – the expression to check
returns – t if the value is an integer, nil otherwise

floatp(expr) [SAL]
(floatp expr) [LISP] – is this a float?

expr – the expression to check
returns – t if the value is a float, nil otherwise

stringp(expr) [SAL]
(stringp expr) [LISP] – is this a string?

expr – the expression to check
returns – t if the value is a string, nil otherwise

characterp(expr) [SAL]
(characterp expr) [LISP] – is this a character?

expr – the expression to check
returns – t if the value is a character, nil otherwise

v 3.24 247

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

arrayp(expr) [SAL]
(arrayp expr) [LISP] – is this an array?

expr – the expression to check
returns – t if the value is an array, nil otherwise

streamp(expr) [SAL]
(streamp expr) [LISP] – is this a stream?

expr – the expression to check
returns – t if the value is a stream, nil otherwise

objectp(expr) [SAL]
(objectp expr) [LISP] – is this an object?

expr – the expression to check
returns – t if the value is an object, nil otherwise

filep(expr) [SAL]
(filep expr) [LISP] – is this a file?

expr – the expression to check
returns – t if the value is an object, nil otherwise
This is not part of standard XLISP nor is it built-in. Nyquist defines it though.

boundp(sym) [SAL]
(boundp sym) [LISP] – is a value bound to this symbol?

sym – the symbol
returns – t if a value is bound to the symbol, nil otherwise

fboundp(sym) [SAL]
(fboundp sym) [LISP] – is a functional value bound to this symbol?

sym – the symbol
returns – t if a functional value is bound to the symbol,
nil otherwise

minusp(expr) [SAL]
(minusp expr) [LISP] – is this number negative?

expr – the number to test
returns – t if the number is negative, nil otherwise

zerop(expr) [SAL]
(zerop expr) [LISP] – is this number zero?

expr – the number to test
returns – t if the number is zero, nil otherwise

plusp(expr) [SAL]
(plusp expr) [LISP] – is this number positive?

expr – the number to test
returns – t if the number is positive, nil otherwise

evenp(expr) [SAL]
(evenp expr) [LISP] – is this integer even?

expr – the integer to test
returns – t if the integer is even, nil otherwise

oddp(expr) [SAL]
(oddp expr) [LISP] – is this integer odd?

expr – the integer to test
returns – t if the integer is odd, nil otherwise

v 3.24 248

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

eq(expr1, expr2) [SAL]
(eq expr1 expr2) [LISP] – are the expressions identical (pointer equality)? Numbers and strings are generally
not eq, e.g. (eq 256 256), (eq 1.0 1.0), and (eq "a" "a") are false.

expr1 – the first expression
expr2 – the second expression
returns – t if they are equal, nil otherwise

eql(expr1, expr2) [SAL]
(eql expr1 expr2) [LISP] – are the expressions of equal value? (eql tests for identical objects (pointer
equality) except for numbers. Two numbers can be eql even if they are stored in different locations. However, a
FIXNUM is never eql to a FLONUM, i.e. (eql 1 1.0) is false.)

expr1 – the first expression
expr2 – the second expression
returns – t if they are equal, nil otherwise

equal(expr1, expr2) [SAL]
(equal expr1 expr2) [LISP] – are the expressions equal? Arrays are not equal unless they are the same
array (pointer equality), but numbers and strings are compared by value, and lists are tested recursively for
equal content. A FIXNUM is never equal to a FLONUM.

expr1 – the first expression
expr2 – the second expression
returns – t if they are equal, nil otherwise

C.23 Control Constructs

(cond pair ...) [LISP] – evaluate conditionally
pair – pair consisting of:

(pred expr...)
where:

pred – is a predicate expression
expr – evaluated if the predicate is not nil

returns – the value of the first expression whose predicate is not nil

and(expr ...) [SAL]
(and expr ...) [LISP] – the logical and of a list of expressions

expr – the expressions to be anded
returns – nil if any expression evaluates to nil, otherwise the value of the last expression (evaluation of
expressions stops after the first expression that evaluates to nil)

or(expr ...) [SAL]
(or expr ...) [LISP] – the logical or of a list of expressions

expr – the expressions to be ored
returns – nil if all expressions evaluate to nil, otherwise the value of the first non-nil expression (evaluation
of expressions stops after the first expression that does not evaluate to nil)

(if texpr expr1 [expr2]) [LISP] – evaluate expressions conditionally.
texpr – the test expression
expr1 – the expression to be evaluated if texpr is non-nil
expr2 – the expression to be evaluated if texpr is nil (default is nil)

v 3.24 249

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

returns – the value of the selected expression.
Note that the SAL conditional expression syntax is #?(test, iftrue-expression, iffalse-expression),
but #if may be used instead of #?. Either form may omit the third argument, which defaults to nil.

when(texpr, expr ...) [SAL]
(when texpr expr ...) [LISP] – evaluate only when a condition is true

texpr – the test expression
expr – the expression(s) to be evaluated if texpr is non-nil
returns – the value of the last expression or nil

unless(texpr, expr ...) [SAL]
(unless texpr expr ...) [LISP] – evaluate only when a condition is false

texpr – the test expression
expr – the expression(s) to be evaluated if texpr is nil
returns – the value of the last expression or nil

(case expr case ...) [LISP] – select by case
expr – the selection expression
case – pair consisting of:

(value expr...)
where:

value – is a single expression or a list of expressions (unevaluated)
expr – are expressions to execute if the case matches

returns – the value of the last expression of the matching case

(let (binding ...) expr ...) [LISP] – create local bindings
(let* (binding ...) expr ...) [LISP] – let with sequential binding

binding – the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr is an initialization expression

expr – the expressions to be evaluated
returns – the value of the last expression

(flet (binding ...) expr ...) [LISP] – create local functions
(labels (binding ...) expr ...) [LISP] – flet with recursive functions
(macrolet (binding ...) expr ...) [LISP] – create local macros

binding – the function bindings each of which is:
(sym fargs expr...)

where:
sym – the function/macro name
fargs – formal argument list (lambda list)
expr – expressions constituting the body of the function/macro

expr – the expressions to be evaluated
returns – the value of the last expression

catch(sym, expr ...) [SAL]
(catch sym expr ...) [LISP] – evaluate expressions and catch throws

sym – the catch tag
expr – expressions to evaluate
returns – the value of the last expression the throw expression

throw(sym [, expr]) [SAL]
(throw sym [expr]) [LISP] – throw to a catch

sym – the catch tag

v 3.24 250

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

expr – the value for the catch to return (defaults to nil)
returns – never returns

unwind-protect(expr, cexpr ...) [SAL]
(unwind-protect expr cexpr ...) [LISP] – protect evaluation of an expression

expr – the expression to protect
cexpr – the cleanup expressions
returns – the value of the expression
Note: unwind-protect guarantees to execute the cleanup expressions even if a non-local exit terminates the
evaluation of the protected expression

C.24 Looping Constructs

(loop expr ...) [LISP] – basic looping form
expr – the body of the loop
returns – never returns (must use non-local exit)

(do (binding ...) (texpr rexpr ...) expr ...) [LISP]
(do* (binding ...) (texpr rexpr ...) expr ...) [LISP]

binding – the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list of the form: (sym init [step]) where:
sym – is the symbol to bind
init – is the initial value of the symbol
step – is a step expression

texpr – the termination test expression
rexpr – result expressions (the default is nil)
expr – the body of the loop (treated like an implicit prog)
returns – the value of the last result expression

(dolist (sym expr [rexpr]) expr ...) [LISP] – loop through a list
sym – the symbol to bind to each list element
expr – the list expression
rexpr – the result expression (the default is nil)
expr – the body of the loop (treated like an implicit prog)

(dotimes (sym expr [rexpr]) expr ...) [LISP] – loop from zero to n-1
sym – the symbol to bind to each value from 0 to n-1
expr – the number of times to loop
rexpr – the result expression (the default is nil)
expr – the body of the loop (treated like an implicit prog)

v 3.24 251

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

C.25 The Program Feature

(prog (binding ...) expr ...) [LISP] – the program feature
(prog* (binding ...) expr ...) [LISP] – prog with sequential binding

binding – the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr is an initialization expression

expr – expressions to evaluate or tags (symbols)
returns – nil or the argument passed to the return function

block(name, expr ...) [SAL]
(block name expr ...) [LISP] – named block

name – the block name (symbol)
expr – the block body
returns – the value of the last expression

(return [expr]) [LISP] – cause a prog construct to return a value
expr – the value (defaults to nil)
returns – never returns

return-from(name [, value]) [SAL]
(return-from name [value]) [LISP] – return from a named block

name – the block name (symbol)
value – the value to return (defaults to nil)
returns – never returns

tagbody(expr ...) [SAL]
(tagbody expr ...) [LISP] – block with labels

expr – expression(s) to evaluate or tags (symbols)
returns – nil

go(sym) [SAL]
(go sym) [LISP] – go to a tag within a tagbody or prog

sym – the tag (quoted)
returns – never returns

(progv slist vlist expr ...) [LISP] – dynamically bind symbols
slist – list of symbols
vlist – list of values to bind to the symbols
expr – expression(s) to evaluate
returns – the value of the last expression

prog1(expr1, expr ...) [SAL]
(prog1 expr1 expr ...) [LISP] – execute expressions sequentially

expr1 – the first expression to evaluate
expr – the remaining expressions to evaluate
returns – the value of the first expression

prog2(expr1, expr2, expr ...) [SAL]
(prog2 expr1 expr2 expr ...) [LISP] – execute expressions sequentially

expr1 – the first expression to evaluate
expr2 – the second expression to evaluate
expr – the remaining expressions to evaluate
returns – the value of the second expression

v 3.24 252

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

progn(expr ...) [SAL]
(progn expr ...) [LISP] – execute expressions sequentially

expr – the expressions to evaluate
returns – the value of the last expression (or nil)

C.26 Debugging and Error Handling

trace(sym) [SAL]
(trace sym) [LISP] – add a function to the trace list

sym – the function to add (quoted)
returns – the trace list

untrace(sym) [SAL]
(untrace sym) [LISP] – remove a function from the trace list

sym – the function to remove (quoted)
returns – the trace list

error(emsg [, arg]) [SAL]
(error emsg [arg]) [LISP] – signal a non-correctable error

emsg – the error message string
arg – the argument expression (printed after the message)
returns – never returns

cerror(cmsg, emsg [, arg]) [SAL]
(cerror cmsg emsg [arg]) [LISP] – signal a correctable error

cmsg – the continue message string
emsg – the error message string
arg – the argument expression (printed after the message)
returns – nil when continued from the break loop

break([bmsg [, arg]]) [SAL]
(break [bmsg [arg]]) [LISP] – enter a break loop

bmsg – the break message string (defaults to **break**)
arg – the argument expression (printed after the message)
returns – nil when continued from the break loop

(clean-up) [LISP] – clean-up after an error
returns – never returns

(top-level) [LISP] – clean-up after an error and return to the top level
returns – never returns

(continue) [LISP] – continue from a correctable error
returns – never returns

(errset expr [pflag]) [LISP] – trap errors
expr – the expression to execute
pflag – flag to control printing of the error message
returns – the value of the last expression consed with nil
or nil on error

v 3.24 253

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

(baktrace [n]) [LISP] – print n levels of trace back information
n – the number of levels (defaults to all levels)
returns – nil

(evalhook expr ehook ahook [env]) [LISP] – evaluate with hooks
expr – the expression to evaluate
ehook – the value for *evalhook*
ahook – the value for *applyhook*
env – the environment (default is nil)
returns – the result of evaluating the expression

profile(flag) [SAL]
(profile flag) [LISP] – turn profiling on or off.

flag – nil turns profiling off, otherwise on
returns – the previous state of profiling.
This is not part of standard XLISP.

C.27 Arithmetic Functions

truncate(expr) [SAL]
(truncate expr) [LISP] – truncates a floating point number to an integer

expr – the number
returns – the result of truncating the number

float(expr) [SAL]
(float expr) [LISP] – converts an integer to a floating point number

expr – the number
returns – the result of floating the integer

(+ expr ...) [LISP] – add a list of numbers
expr – the numbers
returns – the result of the addition

(- expr ...) [LISP] – subtract a list of numbers or negate a single number
expr – the numbers
returns – the result of the subtraction

(* expr ...) [LISP] – multiply a list of numbers
expr – the numbers
returns – the result of the multiplication

(/ expr ...) [LISP] – divide a list of numbers
expr – the numbers
returns – the result of the division

(1+ expr) [LISP] – add one to a number
expr – the number
returns – the number plus one

v 3.24 254

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

(1- expr) [LISP] – subtract one from a number
expr – the number
returns – the number minus one

rem(expr ...) [SAL]
(rem expr ...) [LISP] – remainder of a list of numbers

expr – the numbers
returns – the result of the remainder operation

min(expr ...) [SAL]
(min expr ...) [LISP] – the smallest of a list of numbers

expr – the expressions to be checked
returns – the smallest number in the list

max(expr ...) [SAL]
(max expr ...) [LISP] – the largest of a list of numbers

expr – the expressions to be checked
returns – the largest number in the list

abs(expr) [SAL]
(abs expr) [LISP] – the absolute value of a number

expr – the number
returns – the absolute value of the number

gcd(n1, n2 ...) [SAL]
(gcd n1 n2 ...) [LISP] – compute the greatest common divisor

n1 – the first number (integer)
n2 – the second number(s) (integer)
returns – the greatest common divisor

random(n) [SAL]
(random n) [LISP] – compute a random number between 0 and |n|-1 inclusive. If n is 0, return 0.

n – the upper bound (integer)
returns – a random number

rrandom() [SAL]
(rrandom) [LISP] – compute a random real number between 0 and 1 inclusive

returns – a random floating point number

random-seed(n) [SAL]
(random-seed n) [LISP] – seed the random number generator with starting seed n. If random-seed is not
called, sranddev or some other initialization method will be used by default.

n – the upper bound (integer)
returns – a random number

sin(expr) [SAL]
(sin expr) [LISP] – compute the sine of a number

expr – the floating point number
returns – the sine of the number

cos(expr) [SAL]
(cos expr) [LISP] – compute the cosine of a number

expr – the floating point number
returns – the cosine of the number

v 3.24 255

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

tan(expr) [SAL]
(tan expr) [LISP] – compute the tangent of a number

expr – the floating point number
returns – the tangent of the number

atan(expr [, expr2]) [SAL]
(atan expr [expr2]) [LISP] – compute the arctangent

expr – the value of x
expr2 – the value of y (default value is 1.0)
returns – the arctangent of x/y
This is not part of standard XLISP.

expt(x-expr, y-expr) [SAL]
(expt x-expr y-expr) [LISP] – compute x to the y power

x-expr – the floating point number
y-expr – the floating point exponent
returns – x to the y power

exp(x-expr) [SAL]
(exp x-expr) [LISP] – compute e to the x power

x-expr – the floating point number
returns – e to the x power

sqrt(expr) [SAL]
(sqrt expr) [LISP] – compute the square root of a number

expr – the floating point number
returns – the square root of the number

(< n1 n2 ...) [LISP] – test for less than
(<= n1 n2 ...) [LISP] – test for less than or equal to
(= n1 n2 ...) [LISP] – test for equal to
(/= n1 n2 ...) [LISP] – test for not equal to
(>= n1 n2 ...) [LISP] – test for greater than or equal to
(> n1 n2 ...) [LISP] – test for greater than

n1 – the first number to compare
n2 – the second number to compare
returns – t if all arguments are numbers and the results of comparing n1 with n2, n2 with n3, etc., are all true.
(FIXNUMS are converted to FLONUMS in mixed-type comparisons.)

C.28 Bitwise Logical Functions

logand(expr ...) [SAL]
(logand expr ...) [LISP] – the bitwise and of a list of numbers

expr – the numbers
returns – the result of the and operation

logior(expr ...) [SAL]
(logior expr ...) [LISP] – the bitwise inclusive or of a list of numbers

expr – the numbers
returns – the result of the inclusive or operation

v 3.24 256

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

logxor(expr ...) [SAL]
(logxor expr ...) [LISP] – the bitwise exclusive or of a list of numbers

expr – the numbers
returns – the result of the exclusive or operation

lognot(expr) [SAL]
(lognot expr) [LISP] – the bitwise not of a number

expr – the number
returns – the bitwise inversion of number

C.29 String Functions

string(expr) [SAL]
(string expr) [LISP] – make a string from a value

expr – an integer (which is first converted into its ASCII character value), string, character, or symbol
returns – the string representation of the argument

string-search(pat, str, start: start, end: end) [SAL]
(string-search pat str &key :start :end) [LISP] – search for pattern in string

pat – a string to search for
str – the string to be searched
:start – the starting offset in str
:end – the ending offset + 1
returns – index of pat in str or NIL if not found
This is not part of standard XLISP.

string-trim(bag, str) [SAL]
(string-trim bag str) [LISP] – trim both ends of a string

bag – a string containing characters to trim
str – the string to trim
returns – a trimed copy of the string

string-left-trim(bag, str) [SAL]
(string-left-trim bag str) [LISP] – trim the left end of a string

bag – a string containing characters to trim
str – the string to trim
returns – a trimed copy of the string

string-right-trim(bag, str) [SAL]
(string-right-trim bag str) [LISP] – trim the right end of a string

bag – a string containing characters to trim
str – the string to trim
returns – a trimed copy of the string

string-upcase(str, start: start, end: end) [SAL]
(string-upcase str &key :start :end) [LISP] – convert to uppercase

str – the string
:start – the starting offset
:end – the ending offset + 1
returns – a converted copy of the string

v 3.24 257

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

string-downcase(str, start: start, end: end) [SAL]
(string-downcase str &key :start :end) [LISP] – convert to lowercase

str – the string
:start – the starting offset
:end – the ending offset + 1
returns – a converted copy of the string

nstring-upcase(str, start: start, end: end) [SAL]
(nstring-upcase str &key :start :end) [LISP] – convert to uppercase

str – the string
:start – the starting offset
:end – the ending offset + 1
returns – the converted string (not a copy)

nstring-downcase(str, start: start, end: end) [SAL]
(nstring-downcase str &key :start :end) [LISP] – convert to lowercase

str – the string
:start – the starting offset
:end – the ending offset + 1
returns – the converted string (not a copy)

strcat(expr ...) [SAL]
(strcat expr ...) [LISP] – concatenate strings

expr – the strings to concatenate
returns – the result of concatenating the strings

subseq(string, start [, end]) [SAL]
(subseq string start [end]) [LISP] – extract a substring

string – the string
start – the starting position (zero origin)
end – the ending position + 1 (defaults to end)
returns – substring between start and end

string<(str1, str2, start1: start1, end1: end1, start2: start2, end2: end2) [SAL]
(string< str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string<=(str1, str2, start1: start1, end1: end1, start2: start2, end2: end2) [SAL]
(string<= str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string=(str1, str2, start1: start1, end1: end1, start2: start2, end2: end2) [SAL]
(string= str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string/=(str1, str2, start1: start1, end1: end1, start2: start2, end2: end2) [SAL]
(string/= str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string>=(str1, str2, start1: start1, end1: end1, start2: start2, end2: end2) [SAL]
(string>= str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string>(str1, str2, start1: start1, end1: end1, start2: start2, end2: end2) [SAL]
(string> str1 str2 &key :start1 :end1 :start2 :end2) [LISP]

str1 – the first string to compare
str2 – the second string to compare
:start1 – first substring starting offset
:end1 – first substring ending offset + 1
:start2 – second substring starting offset
:end2 – second substring ending offset + 1
returns – t if predicate is true, nil otherwise
Note: case is significant with these comparison functions.

v 3.24 258

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

string-lessp(str1, str2, start1: start1, end1: end1,
start2: start2, end2: end2) [SAL]

(string-lessp str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string-not-greaterp(str1, str2, start1: start1, end1: end1,

start2: start2, end2: end2) [SAL]
(string-not-greaterp str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string-equal(str1, str2, start1: start1, end1: end1,

start2: start2, end2: end2) [SAL]
(string-equal str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string-not-equal(str1, str2, start1: start1, end1: end1,

start2: start2, end2: end2) [SAL]
(string-not-equal str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string-not-lessp(str1, str2, start1: start1, end1: end1,

start2: start2, end2: end2) [SAL]
(string-not-lessp str1 str2 &key :start1 :end1 :start2 :end2) [LISP]
string-greaterp(str1, str2, start1: start1, end1: end1,

start2: start2, end2: end2) [SAL]
(string-greaterp str1 str2 &key :start1 :end1 :start2 :end2) [LISP]

str1 – the first string to compare
str2 – the second string to compare
:start1 – first substring starting offset
:end1 – first substring ending offset + 1
:start2 – second substring starting offset
:end2 – second substring ending offset + 1
returns – t if predicate is true, nil otherwise
Note: case is not significant with these comparison functions.

C.30 Character Functions

char(string, index) [SAL]
(char string index) [LISP] – extract a character from a string

string – the string
index – the string index (zero relative)
returns – the ascii code of the character

upper-case-p(chr) [SAL]
(upper-case-p chr) [LISP] – is this an upper case character?

chr – the character
returns – t if the character is upper case, nil otherwise

lower-case-p(chr) [SAL]
(lower-case-p chr) [LISP] – is this a lower case character?

chr – the character
returns – t if the character is lower case, nil otherwise

both-case-p(chr) [SAL]
(both-case-p chr) [LISP] – is this an alphabetic (either case) character?

chr – the character

v 3.24 259

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

returns – t if the character is alphabetic, nil otherwise

digit-char-p(chr) [SAL]
(digit-char-p chr) [LISP] – is this a digit character?

chr – the character
returns – the digit weight if character is a digit, nil otherwise

char-code(chr) [SAL]
(char-code chr) [LISP] – get the ascii code of a character

chr – the character
returns – the ascii character code (integer)

code-char(code) [SAL]
(code-char code) [LISP] – get the character with a specified ascii code

code – the ascii code (integer)
returns – the character with that code or nil

char-upcase(chr) [SAL]
(char-upcase chr) [LISP] – convert a character to upper case

chr – the character
returns – the upper case character

char-downcase(chr) [SAL]
(char-downcase chr) [LISP] – convert a character to lower case

chr – the character
returns – the lower case character

digit-char(n) [SAL]
(digit-char n) [LISP] – convert a digit weight to a digit

n – the digit weight (integer)
returns – the digit character or nil

char-int(chr) [SAL]
(char-int chr) [LISP] – convert a character to an integer

chr – the character
returns – the ascii character code

int-char(int) [SAL]
(int-char int) [LISP] – convert an integer to a character

int – the ascii character code
returns – the character with that code

char<(chr1, chr2 ...) [SAL]
(char< chr1 chr2 ...) [LISP]
char<=(chr1, chr2 ...) [SAL]
(char<= chr1 chr2 ...) [LISP] char=(chr1, chr2 ...) [SAL]
(char= chr1 chr2 ...) [LISP]
char/=(chr1, chr2 ...) [SAL]
(char/= chr1 chr2 ...) [LISP]
char>=(chr1, chr2 ...) [SAL]
(char>= chr1 chr2 ...) [LISP]
char>(chr1, chr2 ...) [SAL]
(char> chr1 chr2 ...) [LISP]

chr1 – the first character to compare
chr2 – the second character(s) to compare

v 3.24 260

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

returns – t if predicate is true, nil otherwise
Note: case is significant with these comparison functions.

char-lessp(chr1, chr2 ...) [SAL]
(char-lessp chr1 chr2 ...) [LISP]
char-not-greaterp(chr1, chr2 ...) [SAL]
(char-not-greaterp chr1 chr2 ...) [LISP]
char-equal(chr1, chr2 ...) [SAL]
(char-equal chr1 chr2 ...) [LISP]
char-not-equal(chr1, chr2 ...) [SAL]
(char-not-equal chr1 chr2 ...) [LISP]
char-not-lessp(chr1, chr2 ...) [SAL]
(char-not-lessp chr1 chr2 ...) [LISP]
char-greaterp(chr1, chr2 ...) [SAL]
(char-greaterp chr1 chr2 ...) [LISP]

chr1 – the first string to compare
chr2 – the second string(s) to compare
returns – t if predicate is true, nil otherwise
Note: case is not significant with these comparison functions.

C.31 Input/Output Functions

read([stream [, eof [, rflag]]]) [SAL]
(read [stream [eof [rflag]]]) [LISP] – read an expression

stream – the input stream (default is standard input)
eof – the value to return on end of file (default is nil)
rflag – recursive read flag (default is nil)
returns – the expression read

(print expr [stream]) [LISP] – print an expression on a new line
expr – the expression to be printed
stream – the output stream (default is standard output)
returns – the expression

(display label expr ...) [LISP] – print expressions and their values
label – a string prefix to print, often the current function name or something to identify the source of this line of
output
expr – a list of expressions. Each expression is printed literally without evaluation, then it is evaluated and the
value is printed. This helps to generate readable debugging output such as "In foo: A = 4, B = 2.5"
returns – the expression
Note: Output from display can be turned on and off by calling display-on or display-off as described
below. This is not part of standard XLISP nor is it built-in. Nyquist defines it though.

(display-on) [LISP] – enable display macro
returns – T
Note: This call gives display its default definition as described above. This is not part of standard XLISP nor
is it built-in. Nyquist defines it though.

v 3.24 261

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

(display-off) [LISP] – disable display macro
returns – NIL
Note: This call redefines display to just evaluate arguments and not print anything.
This is not part of standard XLISP nor is it built-in. Nyquist defines it though.

prin1(expr [, stream]) [SAL]
(prin1 expr [stream]) [LISP] – print an expression

expr – the expression to be printed
stream – the output stream (default is standard output)
returns – the expression

princ(expr [, stream]) [SAL]
(princ expr [stream]) [LISP] – print an expression without quoting

expr – the expressions to be printed
stream – the output stream (default is standard output)
returns – the expression

pprint(expr [, stream]) [SAL]
(pprint expr [stream]) [LISP] – pretty print an expression

expr – the expressions to be printed
stream – the output stream (default is standard output)
returns – the expression

terpri([stream]) [SAL]
(terpri [stream]) [LISP] – terminate the current print line

stream – the output stream (default is standard output)
returns – nil

flatsize(expr) [SAL]
(flatsize expr) [LISP] – length of printed representation using prin1

expr – the expression
returns – the length

flatc(expr) [SAL]
(flatc expr) [LISP] – length of printed representation using princ

expr – the expression
returns – the length

C.32 The Format Function

format(stream, fmt, arg ...) [SAL]
(format stream fmt arg ...) [LISP] – do formated
output

stream – the output stream
fmt – the format string
arg – the format arguments
returns – output string if stream is nil, nil otherwise

The format string can contain characters that should be copied directly to the output and formatting directives. The
formatting directives are:

v 3.24 262

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

~A – print next argument using princ
~S – print next argument using prin1
~% – start a new line
~~ – print a tilde character
~<newline> – ignore this one newline and white space on the
next line up to the first non-white-space character or newline. This
allows strings to continue across multiple lines

C.33 File I/O Functions

Note that files are ordinarily opened as text. Binary files (such as standard midi files) must be opened with open-binary
on non-unix systems.

open(fname, direction: direction) [SAL]
(open fname &key :direction) [LISP] – open a file stream

fname – the file name string or symbol
:direction – :input or :output (default is :input)
returns – a stream

open-binary(fname, direction: direction) [SAL]
(open-binary fname &key :direction) [LISP] – open a binary file stream

fname – the file name string or symbol
:direction – :input or :output (default is :input)
returns – a stream

close(stream) [SAL]
(close stream) [LISP] – close a file stream

stream – the stream
returns – nil

setdir(path [, verbose]) [SAL]
(setdir path [verbose]) [LISP] – set current directory

path – the path of the new directory
verbose – print error message if current directory cannot be changed to path
returns – the resulting full path, e.g. (setdir ".") gets the current working directory, or nil if an error occurs
This is not part of standard XLISP.

listdir(path) [SAL]
(listdir path) [LISP] – get a directory listing

path – the path of the directory to be listed
returns – list of filenames in the directory
This is not part of standard XLISP.

get-temp-path() [SAL]
(get-temp-path) [LISP] – get a path where a temporary file can be created. Under Windows, this is based on
environment variables. If XLISP is running as a sub-process to Java, the environment may not exist, in which
case the default result is the unfortunate choice c:\windows\.

returns – the resulting full path as a string
This is not part of standard XLISP.

v 3.24 263

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

get-user() [SAL]
(get-user) [LISP] – get the user ID. In Unix systems (including OS X and Linux), this is the value of the USER
environment variable. In Windows, this is currently just “nyquist”, which is also returned if the environment
variable cannot be accessed. This function is used to avoid the case of two users creating files of the same name
in the same temp directory.

returns – the string naming the user
This is not part of standard XLISP.

find-in-xlisp-path(filename) [SAL]
(find-in-xlisp-path filename) [LISP] – search the XLISP search path (e.g. XLISPPATH from the envi-
ronment) for filename. If filename is not found as is, and there is no file extension, append ".lsp" to filename
and search again. The current directory is not searched.

filename – the name of the file to search for
returns – a full path name to the first occurrence found
This is not part of standard XLISP.

read-char([stream]) [SAL]
(read-char [stream]) [LISP] – read a character from a stream

stream – the input stream (default is standard input)
returns – the character

peek-char([flag [, stream]]) [SAL]
(peek-char [flag [stream]]) [LISP] – peek at the next character

flag – flag for skipping white space (default is nil)
stream – the input stream (default is standard input)
returns – the character

write-char(ch [, stream]) [SAL]
(write-char ch [stream]) [LISP] – write a character to a stream

ch – the character to write
stream – the output stream (default is standard output)
returns – the character

read-int([stream [, length]]) [SAL]
(read-int [stream [length]]) [LISP] – read a binary integer from a stream

stream – the input stream (default is standard input)
length – the length of the integer in bytes (default is 4)
returns – the integer
Note: Integers are assumed to be big-endian (high-order byte first) and signed, regardless of the platform. To
read little-endian format, use a negative number for the length, e.g. -4 indicates a 4-bytes, low-order byte first.
The file should be opened in binary mode.

write-int(ch [, stream [, length]]) [SAL]
(write-int ch [stream [length]]) [LISP] – write a binary integer to a stream

ch – the character to write
stream – the output stream (default is standard output)
length – the length of the integer in bytes (default is 4)
returns – the integer
Note: Integers are assumed to be big-endian (high-order byte first) and signed, regardless of the platform. To
write in little-endian format, use a negative number for the length, e.g. -4 indicates a 4-bytes, low-order byte first.
The file should be opened in binary mode.

v 3.24 264

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

read-float([stream [, length]]) [SAL]
(read-float [stream [length]]) [LISP] – read a binary floating-point number from a stream

stream – the input stream (default is standard input)
length – the length of the float in bytes (default is 4, legal values are -4, -8, 4, and 8)
returns – the integer
Note: Floats are assumed to be big-endian (high-order byte first) and signed, regardless of the platform. To read
little-endian format, use a negative number for the length, e.g. -4 indicates a 4-bytes, low-order byte first. The
file should be opened in binary mode.

write-float(ch [, stream [, length]]) [SAL]
(write-float ch [stream [length]]) [LISP] – write a binary floating-point number to a stream

ch – the character to write
stream – the output stream (default is standard output)
length – the length of the float in bytes (default is 4, legal values are -4, -8, 4, and 8)
returns – the integer
Note: Floats are assumed to be big-endian (high-order byte first) and signed, regardless of the platform. To write
in little-endian format, use a negative number for the length, e.g. -4 indicates a 4-bytes, low-order byte first. The
file should be opened in binary mode.

read-line([stream]) [SAL]
(read-line [stream]) [LISP] – read a line from a stream

stream – the input stream (default is standard input)
returns – the string

read-byte([stream]) [SAL]
(read-byte [stream]) [LISP] – read a byte from a stream

stream – the input stream (default is standard input)
returns – the byte (integer)

write-byte(byte [, stream]) [SAL]
(write-byte byte [stream]) [LISP] – write a byte to a stream

byte – the byte to write (integer)
stream – the output stream (default is standard output)
returns – the byte (integer)

C.34 String Stream Functions

These functions operate on unnamed streams. An unnamed output stream collects characters sent to it when it is used as
the destination of any output function. The functions get-output-stream-string and get-output-stream-list
return a string or a list of characters.

An unnamed input stream is setup with the make-string-input-stream function and returns each character of the
string when it is used as the source of any input function.

make-string-input-stream(str [, start [, end]]) [SAL]
(make-string-input-stream str [start [end]]) [LISP]

str – the string
start – the starting offset
end – the ending offset + 1
returns – an unnamed stream that reads from the string

v 3.24 265

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

make-string-output-stream(stream) [SAL]
(make-string-output-stream) [LISP]

returns – an unnamed output stream

get-output-stream-string(stream) [SAL]
(get-output-stream-string stream) [LISP]

stream – the output stream
returns – the output so far as a string
Note: the output stream is emptied by this function

get-output-stream-list(stream) [SAL]
(get-output-stream-list stream) [LISP]

stream – the output stream
returns – the output so far as a list
Note: the output stream is emptied by this function

C.35 System Functions

Note: the load function first tries to load a file from the current directory. A .lsp extension is added if there is not
already an alphanumeric extension following a period. If that fails, XLISP searches the path, which is obtained from the
XLISPPATH environment variable in Unix and HKEY_LOCAL_MACHINE\SOFTWARE\CMU\Nyquist\XLISPPATH
under Win32. (The Macintosh version has no search path.)

get-real-time() [SAL]
(get-real-time) [LISP] – get the time

returns – Time as FLONUM seconds since Jan 1, 1970
Note: Since the time is a large number, you may want to subtract an earlier time to measure a time interval or
use a custom format to print enough precision. (See *float-format* in Section C.15.)

get-run-time() [SAL]
(get-run-time) [LISP] – get the run time based on number of Lisp expression evaluations. Typically, a
computer will use one unit of run time in about 10ms, but this can vary either way and depends on CPU speed.

returns – Time as a FIXNUM.

get-env(name) [SAL]
(get-env name) [LISP] – get from an environment variable

name – the name of the environment variable
returns – string value of the environment variable, nil if variable does not exist

(load fname &key :verbose :print) [LISP] – load a source file
fname – the filename string or symbol
:verbose – the verbose flag (default is t)
:print – the print flag (default is nil)
returns – the filename

save(fname) [SAL]
(save fname) [LISP] – save workspace to a file

fname – the filename string or symbol
returns – t if workspace was written, nil otherwise

v 3.24 266

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

restore(fname) [SAL]
(restore fname) [LISP] – restore workspace from a file

fname – the filename string or symbol
returns – nil on failure, otherwise never returns

dribble([fname]) [SAL]
(dribble [fname]) [LISP] – create a file with a transcript of a session

fname – file name string or symbol (if missing, close current transcript)
returns – t if the transcript is opened, nil if it is closed

gc() [SAL]
(gc) [LISP] – force garbage collection

returns – nil

expand(num) [SAL]
(expand num) [LISP] – expand memory by adding segments

num – the number of segments to add
returns – the number of segments added

alloc(num) [SAL]
(alloc num) [LISP] – change number of nodes to allocate in each segment

num – the number of nodes to allocate
returns – the old number of nodes to allocate

info() [SAL]
(info) [LISP] – show information about memory usage.

returns – nil

room() [SAL]
(room) [LISP] – show memory allocation statistics

returns – nil

type-of(expr) [SAL]
(type-of expr) [LISP] – returns the type of the expression

expr – the expression to return the type of
returns – nil if the value is nil otherwise one of the symbols:

SYMBOL – for symbols
OBJECT – for objects
CONS – for conses
SUBR – for built-in functions
FSUBR – for special forms
CLOSURE – for defined functions
STRING – for strings
FIXNUM – for integers
FLONUM – for floating point numbers
CHARACTER – for characters
FILE-STREAM – for file pointers
UNNAMED-STREAM – for unnamed streams
ARRAY – for arrays

peek(addrs) [SAL]
(peek addrs) [LISP] – peek at a location in memory

addrs – the address to peek at (integer)
returns – the value at the specified address (integer)

v 3.24 267

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

poke(addrs, value) [SAL]
(poke addrs value) [LISP] – poke a value into memory

addrs – the address to poke (integer)
value – the value to poke into the address (integer)
returns – the value

bigendianp() [SAL]
(bigendianp) [LISP] – is this a big-endian machine?

returns – T if this a big-endian architecture, storing the high-order byte of an integer at the lowest byte address of
the integer; otherwise, NIL.
This is not part of standard XLISP.

address-of(expr) [SAL]
(address-of expr) [LISP] – get the address of an xlisp node

expr – the node
returns – the address of the node (integer)

exit() [SAL]
(exit) [LISP] – exit xlisp. (Note: in Audacity plug-ins, exit is undefined because exiting would terminate
Audacity.)

returns – never returns

setup-console() [SAL]
(setup-console) [LISP] – set default console attributes

returns – NIL
Note: Under Windows, Nyquist normally starts up in a medium-sized console window with black text and a white
background, with a window title of “Nyquist.” This is normally accomplished by calling setup-console in
system.lsp. In Nyquist, you can avoid this behavior by setting *setup-console* to NIL in your init.lsp
file. If setup-console is not called, Nyquist uses standard input and output as is. This is what you want if you
are running Nyquist inside of emacs, for example.

echoenabled(flag) [SAL]
(echoenabled flag) [LISP] – turn console input echoing on or off

flag – T to enable echo, NIL to disable
returns – NIL
Note: This function is only implemented under Linux and Mac OS X. If Nyquist I/O is redirected through pipes,
the Windows version does not echo the input, but the Linux and Mac versions do. You can turn off echoing with
this function. Under windows it is defined to do nothing.

C.36 File I/O Functions

C.36.1 Input from a File

To open a file for input, use the open function with the keyword argument :direction set to :input. To open a file
for output, use the open function with the keyword argument :direction set to :output. The open function takes
a single required argument which is the name of the file to be opened. This name can be in the form of a string or
a symbol. The open function returns an object of type FILE-STREAM if it succeeds in opening the specified file. It
returns the value nil if it fails. In order to manipulate the file, it is necessary to save the value returned by the open

v 3.24 268

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

function. This is usually done by assigning it to a variable with the setq special form or by binding it using let or
let*. Here is an example:

(setq fp (open "init.lsp" :direction :input))

Evaluating this expression will result in the file init.lsp being opened. The file object that will be returned by the
open function will be assigned to the variable fp.

It is now possible to use the file for input. To read an expression from the file, just supply the value of the fp variable as
the optional stream argument to read.

(read fp)

Evaluating this expression will result in reading the first expression from the file init.lsp. The expression will be
returned as the result of the read function. More expressions can be read from the file using further calls to the read
function. When there are no more expressions to read, the read function will return nil (or whatever value was
supplied as the second argument to read).

Once you are done reading from the file, you should close it. To close the file, use the following expression:

(close fp)

Evaluating this expression will cause the file to be closed.

C.36.2 Output to a File

Writing to a file is pretty much the same as reading from one. You need to open the file first. This time you should use
the open function to indicate that you will do output to the file. For example:

(setq fp (open "test.dat" :direction :output))

Evaluating this expression will open the file test.dat for output. If the file already exists, its current contents will
be discarded. If it doesn’t already exist, it will be created. In any case, a FILE-STREAM object will be returned by the
OPEN function. This file object will be assigned to the fp variable.

It is now possible to write to this file by supplying the value of the fp variable as the optional stream parameter in the
print function.

(print "Hello there" fp)

Evaluating this expression will result in the string “Hello there” being written to the file test.dat. More data can be
written to the file using the same technique.

Once you are done writing to the file, you should close it. Closing an output file is just like closing an input file.

(close fp)

Evaluating this expression will close the output file and make it permanent.

C.36.3 A Slightly More Complicated File Example

This example shows how to open a file, read each Lisp expression from the file and print it. It demonstrates the use of
files and the use of the optional stream argument to the read function.

v 3.24 269

Nyquist Reference Manual Appendix C. XLISP: An Object-oriented Lisp

(do* ((fp (open "test.dat" :direction :input))
(ex (read fp) (read fp)))

((null ex) nil)
(print ex))

v 3.24 270

Index

*, 53, 254
*=, 62
~=tolerance, 135
a4-hertz, 75, 135
applyhook, 239
audio-markers, 111
autonorm, 135
autonorm-max-samples, 135
autonorm-previous-peak, 135
autonorm-target, 135
autonorm-type, 136
autonormflag, 135
breakenable, 136, 232, 238
clipping-error, 136
clipping-threshold, 136
control-srate, 28, 105, 136
debug-io, 238
default-control-srate, 136
default-plot-file, 116, 136
default-sf-bits, 136
default-sf-dir, 110, 136
default-sf-format, 136
default-sf-srate, 113, 136
default-sound-srate, 137
error-output, 238
evalhook, 239
file-separator, 137
float-format, 239
gc-flag, 239
gc-hook, 239
integer-format, 239
loud, 28
lpslider-cutoff, 137
obarray, 238
print-case, 239
readtable, 234, 239
rslt, 137, 228
saw-table, 137
sine-table, 137

snd-device, 137
snd-device-default, 137
snd-list-devices, 137
sound-srate, 29, 105, 138
soundenable, 138
spec-plot-bw, 117
spec-plot-db, 117
spec-plot-res, 116
standard-input, 238
standard-output, 238
start, 28
stop, 28
sustain, 28
table, 135
trace-output, 238
tracelimit, 232, 239
tracelist, 238
tracenable, 138, 232, 239
transpose, 28
tri-table, 138
unbound, 239
warp, 28, 104
+, 53, 254
+=, 62
, (adagio), 161
-, 53, 254
. (adagio), 154
/, 53, 254
/=, 256
:answer, 238
:class, 237
:isa, 237
:isnew, 237, 238
:new, 237
:show, 237
; (adagio), 161
<, 53, 256
<=, 54, 63, 256
=, 53, 256

271

Nyquist Reference Manual Index

>, 53, 256
>=, 53, 63, 256
(adagio articulation), 155
#?, sal, 55
#define’d macros, 228
#f, 53
#t, 53
%, 53
% (adagio thirtysecond note), 154
&, 54
&=, 62
^, 53
^=, 62
^ (adagio sixtyfourth note), 154
~, 54
~=, 54
~~, 54
~ (adagio), 162
1+, 254
1-, 255

A440, 19, 75
Abs, 255
Abs-env, 104
Absolute stretch, sal, 54
Absolute time shift, sal, 54
Absolute value, 100, 119
Access samples, 69
Access character in string, 259
Accidentals, 153
Accumulate pattern, 181
Accumulation pattern, 180
Adagio, 152
Adagio file reader, 150
Adagio file writer, 151
Add offset to sound, 120
Add to file samples, 115
Add-action-to-workspace, 203
Add-to-workspace, 202
Additive synthesis, gongs, 20
Address-of, 268
Aftertouch, 162
Agc, 208
Algorithmic composition, 175
All pass filter, 89
Alloc, 267
Allpass2, 93
Allpoles-from-lpc, 169
Alpass, 89

Alpass filter, 89
Amosc, 82
And, 249
Annotation, audio, 205
Append, 243
Apply, 239
Apply-banded-bass-boost, 211
Apply-banded-delay, 210
Apply-banded-treble-boost, 211
Approximation, 84
Arc-sine-dist, 188
Arcsine distribution, 188
Aref, 242
Areson, 92
Args, 172
Arguments to a lisp function, 172
Arithmetic functions, 254
Arpeggiator, 20
Array from sound, 70
Array functions, 242
Array notation, sal, 55
Arrayp, 248
Articulation, 152, 155
Ascii, 260
Assoc, 244
Asterisk, 152
At, 104
At transformation, 31
At, sal, 54
At-abs, 104
At-abs, sal, 54
Atan, 256
Atom, 246
Atone, 91
Attributes, 152
Audacity, 205
Audio annotation, 205
Audio markers, 111
Audio output device, 137
Autocorrelation of vector data, 206
Automatic gain control, 208
Autonorm-off, 111
Autonorm-on, 111
Average, 100, 120

Backquote, 240
Backward, 209
Baktrace, 254
Banded bass boost, 211

v 3.24 272

Nyquist Reference Manual Index

Banded delay, 210
Banded treble boost, 211
Bandfx.lsp, 210
Bandpass filter, 91
Bandpass2, 93
Bartok, 159
Begin, 55
Behavioral abstraction, 27
Behaviors, 76
Bell sound, 20
Bernoulli distribution, 189
Bernoulli-dist, 189
Beta distribution, 189
Beta-dist, 189
Big endian, 268
Bigendianp, 268
Bilateral exponential distribution, 185
Bilateral-exponential-dist, 185
Binary files, 263
Binomial distribution, 190
Binomial-dist, 190
Biquad, 92
Biquad-m, 92
Bitwise logical functions, 256
Blank, 153
Block, 252
Both-case-p, 259
Boundp, 248
Bowed, 97
Bowed-freq, 97
Brass sound, 20
Break, 232, 253
Break button, 22
Breath envelope, 98
Browse button, 22
Browser, nyquistide, 24
Build-harmonic, 15, 78
Button, 141
Button bar, 22
Buzz, 83

Call command, 166
Car, 243
Case, 250
Case-insensitive, 52, 153, 234
Catch, 250
Cauchy distribution, 185
Cauchy-dist, 185
Cdr, 243

Cerror, 253
Change directory, 263
Char, 259
Char-code, 260
Char-downcase, 260
Char-equal, 261
Char-greaterp, 261
Char-int, 260
Char-lessp, 261
Char-not-equal, 261
Char-not-greaterp, 261
Char-not-lessp, 261
Char-upcase, 260
Char/=, 260
Char<, 260
Char<=, 260
Char=, 260
Char>, 260
Char>=, 260
Character functions, 259
Characterp, 247
Chdir, sal, 56
Chorus, 95, 120, 128, 210
Chowning, john, 20
Clarinet, 95, 96
Clarinet sound, 20
Clarinet-all, 96
Clarinet-freq, 95
Class, 237
Class class, 237
Clean-up, 253
Clip, 43, 100, 120
Clipping, 136
Clipping repair, 208
Clock, 164
Clock command, 164
Close, 263
Close-slider-panel, 140
Co-termination, 119
Code-char, 260
Comb, 89
Comb filter, 89
Combination, 106
Command line, 12
Command loop, 231
Commas, 161
Comment, 152, 153
Comments, 52

v 3.24 273

Nyquist Reference Manual Index

Compose, 120
Compress, 208
Compress-map, 207
Compressor, 73
Compute time, 70
Concatenate strings, 258
Cond, 249
Conditional expression, sal, 55
Configure nyquist, 10
Congen, 90
Cons, 243
Console, xlisp, 268
Consp, 247
Const, 77
Constant function, 77
Continue, 253
Continuous-control-warp, 104
Continuous-sound-warp, 104
Contour generator, 90
Control, 77
Control change, 162
Control characters, xlisp, 231
Control constructs, 249
Control panel, 140
Control-a, 111
Control-srate-abs, 105
Control-warp, 78
Convert flonum to fixnum, 76
Convert sound to array, 70
Convert to string, 262
Convert character to code, 260
Convert code to character, 260
Convert fixnum to flonum, 254
Convert flonum to fixnum, 254
Convert string to character, 257, 259
Convert symbol to string, 257
Convolution, 90
Convolution tutorial, 90
Convolve, 90
Copier pattern, 180
Correlation, 205
Cos, 255
Cosine, vector, 206
Ctrlfn-bend, 201
Ctrlfn-bend?, 201
Ctrlfn-cpress, 201
Ctrlfn-cpress?, 201
Ctrlfn-ctrl, 201

Ctrlfn-ctrl?, 201
Cue, 76
Cue-file, 77
Current-path, 173
Curve fitting, 206
Cxxr, 243
Cxxxr, 243
Cxxxxr, 243
Cycle pattern, 178

Darwiinremoteosc, 144
Data types, 232
Db-average, 208
Db-to-linear, 72
Db-to-vel, 72
Db0, 19
Db1, 19
Db10, 19
Debug print, sal, 61
Debug print, xlisp, 261
Debugging, 71, 117, 171, 253, 254
Decf, 173
Decrement, 173
Default, 158
Default durations, 157
Default sample rate, 34
Default sound file directory, 110
Default sound file name, 110
Default time, 153
Define function, 56
Define variable, 56
Defining behaviors, 32
Defmacro, 241
Defun, 241
Delay, 91
Delay, variable, 120, 121
Delete, 246
Delete-if, 246
Delete-if-not, 246
Demos, bell sound, 20
Demos, convolution, 90
Demos, distortion, 92
Demos, drum machine, 20
Demos, drum sound, 20
Demos, fft, 146
Demos, fm, 46
Demos, fm synthesis, 20
Demos, formants, 20
Demos, gong sound, 20

v 3.24 274

Nyquist Reference Manual Index

Demos, lpc, 168
Demos, midi, 150
Demos, multiple band effects, 210
Demos, piano, 206
Demos, pitch change, 120
Demos, probability distributions, 184
Demos, rhythmic pattern, 20
Demos, sample-by-sample, 20
Demos, shepard tones, 92
Demos, slider control, 140
Demos, spectral analysis of a chord, 20
Demos, voice synthesis, 92
Demos, wind sound, 48
Derivative, 81
Describe, 203
Destructive list functions, 245
Developing code, 171
Devices, 137
Diff, 109
Difference, 204
Difference of sounds, 109
Difference of vector data, 206
Digit-char, 260
Digit-char-p, 260
Directory, default sound file, 110
Directory listing, 263
Display, 261
Display statement, sal, 61
Display-off, 262
Display-on, 261
Distortion tutorial, 92
Distributions, probability, 184
Division, 102
Do, 251
Do*, 251
Dolby pro-logic, 213
Dolby surround, 213
Dolist, 251
Doppler effect, 214
Dot, 154
Dotimes, 251
Dotted durations, 19
Dribble, 267
Drum, 215
Drum machine, 20, 214
Drum samples, 20
Drum sound, 20
Drum-loop, 215

Dsp in lisp, 20, 48
Dtmf, 212
Dtmf-tone, 212
Dubugging, 121
Duration, 152, 154
Duration notation, 19
Duration of another sound, 119
Duration of sound, 70
Dx7, 155
Dynamic markings, 156

Echo, 91
Echoenabled, 268
Editor for envelopes, 24
Effect, chorus, 95, 128, 210
Effect, flange, 210
Effect, pitch shift, 95, 128
Effect, reverberation, 94, 128, 212
Effect, stereo, 213
Effect, stereo pan, 213
Effect, swap channels, 213
Effect, widen, 213
Effects, phaser, 210
Eighth note, 19, 154
Elapsed audio time, 111
Emacs, using nyquist with, 268
Empty list, 53
End, 55
End command, 166
Endian, 268
Endless tones, 20
Endp, 247
Env, 16, 77
Env-note, 16
Envedit button, 22
Envelope, 16
Envelope editor, 24
Envelope follower, 73, 121
Envelope generator, 90
Envelopes, 16
Environment, 27
Environment variables, 266
Eq, 249
Eq button, 22
Eq-band, 93
Eq-highshelf, 93
Eq-lowshelf, 93
Eql, 249
Equal, 249

v 3.24 275

Nyquist Reference Manual Index

Equalization, 93, 209
Equalization editor, 25
Error, 253
Error handling, 253
Errors, 8
Errset, 253
Estimate frequency, 103
Eval, 239
Eval pattern, 182
Evalhook, 254
Evaluation functions, 239
Evaluator, 233
Evenp, 248
Event-dur, 195
Event-end, 195
Event-expression, 195
Event-get-attr, 196
Event-has-attr, 196
Event-set-attr, 196
Event-set-dur, 195
Event-set-expression, 195
Event-set-time, 195
Event-time, 195
Exclamation point, 153
Exec statement, sal, 57
Execution time, 266
Exit, 268
Exit statement, sal, 63
Exp, 256
Exp-dec, 77
Expand, 267
Exponent, 174
Exponential, 101
Exponential distribution, 185
Exponential envelope, 77
Exponential-dist, 185
Expr-get-attr, 196
Expr-has-attr, 195
Expr-set-attr, 196
Expression pattern, 182
Expressions, sal, 52
Expt, 256
Extending xlisp, 226
Extract, 105
Extract-abs, 105

F (adagio dynamic), 156
F (adagio flat), 153
Fast fourier transform tutorial, 146

Fboundp, 248
Feedback fm oscillator, 83
Feedback-delay, 91
Feel factor, 200
Ff (adagio dynamic), 156
Fff (adagio dynamic), 156
Fft, 146
Fft tutorial, 146
File access limit, 12
File i/o functions, 263, 268
Filep, 248
Filter example, 48
Finally clause, sal, 60
Find-in-xlisp-path, 264
Find string, 257
Fir filter, 90
First, 243
First derivative, 81
Flange, 210
Flange effect, 210
Flat, 153
Flatc, 262
Flatsize, 262
Flet, 250
Float, 254
Floatp, 247
Flute, 97
Flute sound, 20
Flute-all, 97
Flute-freq, 97
Fm synthesis, 46
Fm voices, 20
Fmfb, 83
Fmlfo, 78
Fmosc, 83
Fn button, 22
Follow, 73
Follower, 121
Force-srate, 78
Format, 262
Format function, 262
Fourth, 243
Frequency analysis, 103
Frequency modulation, 45
Full path name, 173
Funcall, 239
Function calls, sal, 55
Function, sal, 56

v 3.24 276

Nyquist Reference Manual Index

Fundamenal frequency estimation, 103

Gain, 208
Gamma-dist, 185
Garbage collection, 267
Gate, 73, 122
Gaussian distribution, 188
Gaussian-dist, 188
Gc, 267
Gcd, 255
Gen05, 87, 89
Gensym, 241
Geometric distribution, 190
Geometric-dist, 190
Get, 242
Get-duration, 75
Get-env, 266
Get-ioi, 75
Get-lambda-expression, 240
Get-loud, 75
Get-output-stream-list, 266
Get-output-stream-string, 266
Get-real-time, 266
Get-run-time, 266
Get-slider-value, 141
Get-sustain, 75
Get-temp-path, 263
Get-transpose, 75
Get-user, 264
Get-warp, 75
Get char, 264
Get character from string, 259
Getenv, 266
Global variables, 135
Global variables, sal, 56
Gnuplot, 205
Go, 252
Gong sounds, 20
Granular synthesis, 211
Graphical envelope editor, 24
Graphical equalizer, 25, 209
Grindef, 172

H, 19
H (adagio half note), 154
Half note, 19, 154
Harmonic, 78
Hash, 242
Hd, 19

Header file format, 226
Heap pattern, 179
High-pass filter, 91
Highpass2, 93
Highpass4, 94
Highpass6, 94
Highpass8, 94
Histogram, 205
Hp, 91
Ht, 19
Hyperbolic-cosine-dist, 187
Hz-to-step, 74
Hzosc, 82

I, 19
I (adagio eight note), 154
Iannis xenakis, 25
Id, 19
Ide, 11
If, 249
If statement, sal, 57
Ifft, 146
Incf, 172
Increment, 172
Index character in string, 259
Info, 267
Info button, 22
Input from a file, 268
Input/output functions, 261
Installation, 10
Int-char, 260
Integerp, 247
Integrate, 81
Integrated development environment, 11
Inter-onset interval, 75
Interactivity, 139
Intern, 241
Interoperability, sal and lisp, 63
Interpolate, 203
Intersection, 204
Intgen, 225
Inverse, 122
Inverse fft, 146
It, 19

Jcrev, 94
Jitter, 200
Json library, 206

v 3.24 277

Nyquist Reference Manual Index

K (adagio control), 162
Karplus-strong, 83
Karplus-strong synthesis, 20
Keyword parameters, 193
Kurtosis, statistics, 205

Label files, 205
Labels, 250
Lambda, 240
Lambda lists, 235
Last, 243
Latency, 76
Legato, 106, 155
Length, 244
Length of sound, 70
Length pattern, 182
Length-of-beat, 215
Let, 250
Let*, 250
Levene’s test, 205
Lexical conventions, 233
Lf, 19
Lf (adagio dynamic), 156
Lff, 19
Lff (adagio dynamic), 156
Lfff, 19
Lfff (adagio dynamic), 156
Lfo, 78
Libraries, 205
Limit, 100
Limit, file access, 12
Limit, memory, 12, 72
Limit, run-time, 12
Limiter, 73
Line pattern, 178
Linear algebra, 206
Linear distribution, 184
Linear interpolation, 203
Linear prediction, 168
Linear prediction tutorial, 168
Linear regression, 206
Linear-dist, 184
Linear-to-db, 74
Linear-to-vel, 74
Lisp button, 22
Lisp dsp, 20, 48
Lisp include files, 229
List, 243
List functions, 243

List output devices, 137
List directory, 263
Listdir, 263
Listing of lisp function, 172
Listp, 247
Little endian, 268
Lmf, 18
Lmf (adagio dynamic), 156
Lmp, 18
Lmp (adagio dynamic), 156
Load, 266
Load button, 22
Load file conditionally, 173
Load statement, sal, 58
Local-to-global, 76
Log, 74
Log function, 74
Logand, 256
Logical-stop, 67
Logior, 256
Logistic distribution, 187
Logistic-dist, 187
Lognot, 257
Logorithm, 101
Logxor, 257
Loop, 251
Loop examples, sal, 60
Loop statement, sal, 59
Looping constructs, 251
Loud, 105
Loud-abs, 105
Loudness, 152, 156
Low-frequency oscillator, 78
Low-pass filter, 91, 128
Lower-case-p, 259
Lowpass2, 92
Lowpass4, 94
Lowpass6, 94
Lowpass8, 94
Lp, 18, 91
Lp (adagio dynamic), 156
Lpc, 168
Lpc tutorial, 168
Lpc-frame-err, 168, 169
Lpc-frame-filter-coefs, 168, 169
Lpc-frame-rms1, 168, 169
Lpc-frame-rms2, 168, 169
Lpp, 18

v 3.24 278

Nyquist Reference Manual Index

Lpp (adagio dynamic), 156
Lppp, 18
Lppp (adagio dynamic), 156
Lpreson, 169
Lpslider, 141

M (adagio control), 162
Macroexpand, 240
Macroexpand-1, 240
Macrolet, 250
Magnitude spectrum plot, 116
Make-accumulate, 181
Make-accumulation, 180
Make-array, 242
Make-button, 141
Make-copier, 180
Make-cycle, 178
Make-eval, 182
Make-heap, 179
Make-length, 182
Make-line, 178
Make-lpanal-iterator, 168
Make-lpc-file-iterator, 169
Make-markov, 183
Make-palindrome, 179
Make-product, 181
Make-random, 178
Make-slider, 140
Make-slider-panel, 140
Make-string-input-stream, 265
Make-string-output-stream, 266
Make-sum, 181
Make-symbol, 241
Make-window, 182
Maketable, 78
Mandolin, 98
Manipulation of scores, 195
Mapc, 245
Mapcar, 245
Mapl, 245
Maplist, 245
Mark button, 22
Markers, audio, 111
Markov analysis, 183
Markov pattern, 183
Markov-create-rules, 183
Max, 255
Max, statistics, 205
Maximum, 101, 255

Maximum amplitude, 43, 122
Maximum of two sounds, 123
Mean, 205
Mean of vector, 206
Median of vector data, 206
Median, statistics, 205
Member, 244
Memory limit, 12, 72
Memory usage, 12, 71, 72
Mf (adagio dynamic), 156
Middle c, 154
Midi, 150
Midi clock, 164
Midi file, 201, 202
Midi file readr, 150
Midi file writer, 151
Midi program, 156
Midi sequence, 150
Midi tutorial, 150
Midi-show, 212
Midi-show-file, 212
Mikrokosmos, 159
Min, 255
Min, statistics, 205
Minimum, 101, 255
Minusp, 248
Mix, 109
Mix to file, 115
Mkwave, 15
Modalbar, 98
Modulation wheel, 162
Modulo (rem) function, 255
Mono to stereo, 213
Moving average, 100, 120
Mp (adagio dynamic), 156
Mult, 16, 79, 109
Multichannel sounds, 67
Multiple band effects, 210
Multiple commands, 161
Multiple tempi, 163
Multiplication, 123
Multiply signals, 109
My-note, 16

N (adagio next), 155
Natural, 153
Natural log, 101
Nband, 209
Nband-range, 209

v 3.24 279

Nyquist Reference Manual Index

Nconc, 246
Nested transformations, 32
Newfile button, 22
Next, 176
Next adagio command, 155
Next in pattern, 176
Next pattern, 176
Nil, 53, 232
Nintendo wiimote, 144
Noise, 102
Noise gate, 122
Noise-gate, 73
Norm of vector, 206
Normalization, 43
Not, 247
Not enough memory for normalization, 43
Notch filter, 92
Notch2, 93
Note list, 109
Nrev, 94
Nstring-downcase, 258
Nstring-upcase, 258
Nth, 244
Nth-frame, 169
Nthcdr, 244
Null, 247
Numberp, 247
Ny:all, 20
Nyquistide, 11

O (adagio control), 162
Object, 237
Object class, 237
Objectp, 248
Objects, 236
Octave specification, 153, 154
Oddp, 248
Offset, 200
Offset to a sound, 120
Omissions, 8
Oneshot, 123
Open, 263
Open sound control, 143, 144
Open-binary, 263
Openfile button, 22
Or, 249
Osc, 14, 81, 144
Osc-enable, 144
Osc-note, 101

Osc-pulse, 82
Osc-saw, 82
Osc-tri, 82
Output device, 137
Output samples to file, 111
Output to a file, 269
Overlap, 106
Overwrite samples, 115

P (adagio dynamic), 156
P (adagio pitch), 154
Palindrome pattern, 179
Pan, 79, 213
Pan, stereo, 213
Parameters, keyword, 193
Params-scale, 203
Params-transpose, 203
Partial, 82
Path, current, 173
Pattern objects, 176
Pattern, accumulate, 181
Pattern, accumulation, 180
Pattern, copier, 180
Pattern, cycle, 178
Pattern, eval, 182
Pattern, expression, 182
Pattern, heap, 179
Pattern, length, 182
Pattern, line, 178
Pattern, markov, 183
Pattern, palindrome, 179
Pattern, product, 181
Pattern, random, 178
Pattern, sum, 181
Pattern, window, 182
Pattern-class, 176
Patternp, 203
Patterns, 175
Peak, 100, 122
Peak amplitude, 43
Peak, maximum amplitude, 122
Pearson correlation, 205
Peek, 267
Peek-char, 264
Performance measurement, 70
Period estimation, 103
Phase vocoder, 99
Phaser, 210
Phasevocoder, 99, 131

v 3.24 280

Nyquist Reference Manual Index

Physical model, 20
Physical models, 95
Piano synthesizer, 206
Piano synthesizer tutorial, 206
Piano-midi, 207
Piano-midi2file, 207
Piano-note, 206
Piano-note-2, 207
Piece-wise, 84
Piece-wise linear, 123
Pitch, 152, 153
Pitch bend, 162
Pitch detection, 103
Pitch notation, 19
Pitch shift, 95, 99, 128
Pitch shifting, 120
Pitshift, 95
Pl-center, 213
Pl-doppler, 214
Pl-left, 213
Pl-pan2d, 214
Pl-position, 214
Pl-rear, 214
Pl-right, 213
Play, 14, 110
Play in reverse, 209
Play statement, sal, 61
Play-file, 111
Plot, 61, 115, 116
Plot statement, sal, 61
Plots, 205
Pluck, 83
Plucked string, 83
Plusp, 248
Poisson distribution, 190
Poisson-dist, 190
Poke, 268
Polyrhythm, 163
Pop, 173
Portamento switch, 162
Portaudio, 137
Power, 174
Pp (adagio dynamic), 156
Ppp (adagio dynamic), 156
Pprint, 262
Prcrev, 94
Predicate functions, 246
Preset, 156

Prin1, 262
Princ, 262
Print, 261
Print midi file, 212
Print statement, sal, 61
Probability distributions, 184
Prod, 79
Product, 109
Product pattern, 181
Profile, 254
Profiling, 238
Prog, 252
Prog*, 252
Prog1, 252
Prog2, 252
Progn, 253
Program, 162
Program change, 155
Program feature, 252
Progv, 252
Prologic, 213
Property list functions, 242
Protected files, 12
Psetq, 240
Pulse oscillator, 82
Pulse-width modulation, 82
Push, 173
Putprop, 242
Pv-time-pitch, 99
Pwe, 87
Pwe-list, 87
Pwer, 87
Pwer-list, 87
Pwev, 87
Pwev-list, 87
Pwevr, 87
Pwevr-list, 88
Pwl, 86
Pwl-list, 86
Pwlr, 86
Pwlr-list, 86
Pwlv, 86
Pwlv-list, 86
Pwlvr, 86
Pwlvr-list, 87
Pwz, 88
Pwz-list, 88
Pwzr, 89

v 3.24 281

Nyquist Reference Manual Index

Pwzr-list, 89
Pwzv, 88
Pwzv-list, 88
Pwzvr, 89
Pwzvr-list, 89

Q, 19
Q (adagio quarter note), 154
Qd, 19
Qt, 19
Quantize, 102
Quarter note, 19, 154
Quote, 239

R (adagio rest), 155
Ramp, 102
Random, 174, 184, 255
Random pattern, 178
Random-seed, 255
Rate, 153, 157
Read, 261
Read adagio file, 150
Read macros, 234
Read midi file, 150
Read samples, 69
Read samples from file, 113
Read samples in reverse, 209
Read-byte, 265
Read-char, 264
Read-float, 265
Read-int, 264
Read-line, 265
Read directory, 263
Readtables, 234
Real-random, 174
Real time, 266
Recip, 102
Reciprocal, 102
Regression, 206
Rem, 255
Remainder, 255
Remove, 244
Remove-if, 244
Remove-if-not, 244
Remprop, 242
Replace file samples, 115
Replay button, 22
Require-from, 173
Resample, 79

Resampling, 78, 120
Rescaling, 43
Resolution, 161
Reson, 91
Rest, 102, 243
Restore, 267
Rests, 155
Return, 252
Return statement, sal, 62
Return-from, 252
Reverb, 94, 128, 212
Reverse, 243
Reverse, sound, 209
Ring modulation, 16
Risset, 20
Rms, 100, 102, 120
Room, 267
Round, 76
Rplaca, 245
Rplacd, 246
Rrandom, 255
Run-time limit, 12
Run time, 266

S, 19
S (adagio sharp), 153
S (adagio sixteenth note), 154
S-abs, 100
S-add-to, 115
S-avg, 100
S-exp, 101
S-log, 101
S-max, 43, 101
S-min, 43, 101
S-overwrite, 115
S-plot, 115
S-print-tree, 117
S-read, 113
S-read-reverse, 209
S-rest, 102
S-reverse, 209
S-save, 111
S-sqrt, 101
Sa-get-bin-width, 148
Sa-get-fft-dur, 148
Sa-get-fft-size, 148
Sa-get-fft-skip-size, 148
Sa-get-fft-window, 148
Sa-get-sample-rate, 149

v 3.24 282

Nyquist Reference Manual Index

Sa-get-skip-period, 148
Sa-info, 148
Sa-init, 147
Sa-magnitude, 148
Sa-next, 148
Sa-normalize, 148
Sa-plot, 148
Sa-print, 148
Sal, 51
Sal and lisp, 63
Sal button, 22
Sal expressions, 52
Sample interpolation, 124
Sample rate, forcing, 78
Sampler, 84
Samples, 67, 70
Samples, reading, 69
Sampling rate, 34, 71, 74
Save, 266
Save samples to file, 111
Save-lpc-file, 169
Save-workspace, 202
Savefile button, 22
Saving sound files, 42
Sawtooth oscillator, 82
Sawtooth table, 137
Sawtooth wave, 15
Sax, 96
Sax-all, 96
Sax-freq, 96
Scale, 79
Scale, tuning, 19, 74
Scale-db, 79
Scale-srate, 79
Scan directory, 263
Score, 109
Score manipulation, 195
Score-adjacent-events, 199
Score-append, 198
Score-apply, 200
Score-filter, 198
Score-filter-length, 199
Score-filter-overlap, 199
Score-from-seq, 201
Score-gen, 192–194
Score-get-begin, 198
Score-get-end, 199
Score-indexof, 200

Score-last-indexof, 200
Score-merge, 198
Score-must-have-begin-end, 199
Score-play, 199
Score-print, 199
Score-randomize-start, 200
Score-read, 201
Score-read-smf, 201
Score-repeat, 199
Score-scale, 197
Score-select, 198
Score-set-begin, 198
Score-set-end, 198
Score-shift, 196
Score-sort, 196
Score-sorted, 196
Score-stretch, 197
Score-stretch-to-length, 199
Score-sustain, 197
Score-transpose, 197
Score-voice, 197
Score-write, 202
Score-write-smf, 202
Sd, 19
Second, 243
Sections, adagio, 160
Security, 12
Seed, 255
Select output device, 137
Self, 238
Semicolon, adagio, 161
Seq, 107
Seq-copy, 151
Seq-create, 150
Seq-get, 151
Seq-insert-ctrl, 151
Seq-insert-note, 151
Seq-next, 152
Seq-read, 150
Seq-read-smf, 150
Seq-reset, 151
Seq-write, 151
Seq-write-smf, 151
Seqrep, 108
Sequence, 150
Sequences, 16, 150
Sequential behavior, 29
Set, 240

v 3.24 283

Nyquist Reference Manual Index

Set intersection, 204
Set statement, sal, 62
Set union, 204
Set-control-srate, 74
Set-difference, 204
Set-logical-stop, 109
Set-pitch-names, 74
Set-sound-srate, 74
Setdir, 263
Setf, 240
Seti commnad, 166
Setq, 240
Setup nyquist, 10
Setup-console, 268
Setv command, 166
Sf-granulate, 211
Sf-info, 115
Shape, 92
Sharp, 153
Shepard tones, 20, 92
Shift-time, 80
Show midi file, 212
Show output devices, 137
Show-lpc-data, 169
Signal composition, 120, 124
Signal multiplication, 123
Signal-start, 67
Signal-stop, 67
Sim, 15, 108
Simrep, 109
Simultaneous behavior, 29
Sin, 255
Sine, 82
Sine table, 137
Siosc, 83
Sitar, 98
Sixteenth note, 19, 154
Sixtyfourth note, 154
Slider, 140, 141
Slider tutorial, 140
Slider-panel, 140
Slope, 81
Smooth, 81
Snd-abs, 119
Snd-add, 120
Snd-allpoles, 170
Snd-alpass, 125
Snd-alpasscv, 125

Snd-alpassvv, 125
Snd-amosc, 130
Snd-areson, 125
Snd-aresoncv, 126
Snd-aresonvc, 126
Snd-aresonvv, 126
Snd-atone, 126
Snd-atonev, 126
Snd-avg, 120
Snd-bandedwg, 132
Snd-biquad, 126
Snd-bowed, 132
Snd-bowed-freq, 132
Snd-buzz, 130
Snd-chase, 126
Snd-clarinet, 132
Snd-clarinet-all, 132
Snd-clarinet-freq, 132
Snd-clip, 120
Snd-compose, 120
Snd-congen, 127
Snd-const, 117
Snd-convolve, 127
Snd-copy, 121
Snd-coterm, 119
Snd-delay, 127
Snd-delaycv, 127
Snd-down, 121
Snd-exp, 121
Snd-extent, 69
Snd-fetch, 69
Snd-fetch-array, 69
Snd-fft, 146
Snd-flatten, 70
Snd-flute, 132
Snd-flute-all, 133
Snd-flute-freq, 133
Snd-fmfb, 130
Snd-fmfbv, 130
Snd-fmosc, 130
Snd-follow, 121
Snd-from-array, 68
Snd-fromarraystream, 68
Snd-fromobject, 69
Snd-gate, 122
Snd-ifft, 146
Snd-inverse, 122
Snd-length, 70

v 3.24 284

Nyquist Reference Manual Index

Snd-log, 122
Snd-lpanal, 170
Snd-lpreson, 170
Snd-mandolin, 133
Snd-max, 122
Snd-maxsamp, 70
Snd-maxv, 123
Snd-modalbar, 133
Snd-multiseq, 134
Snd-normalize, 123
Snd-offset, 120
Snd-oneshot, 123
Snd-osc, 130
Snd-overwrite, 118
Snd-partial, 130
Snd-phasevocoder, 131
Snd-play, 70
Snd-pluck, 130
Snd-print, 71
Snd-print-tree, 70, 117
Snd-prod, 123
Snd-pwl, 123
Snd-quantize, 124
Snd-read, 117
Snd-recip, 124
Snd-resample, 124
Snd-resamplev, 124
Snd-reson, 127
Snd-resoncv, 128
Snd-resonvc, 128
Snd-resonvv, 128
Snd-sampler, 131
Snd-samples, 70
Snd-save, 118
Snd-sax, 133
Snd-sax-all, 133
Snd-sax-freq, 133
Snd-scale, 124
Snd-seq, 134
Snd-set-latency, 76
Snd-set-logical-stop, 71
Snd-set-max-audio-mem, 72
Snd-shape, 124
Snd-sine, 131
Snd-siosc, 131
Snd-sitar, 134
Snd-slider, 142
Snd-sqrt, 119

Snd-srate, 71
Snd-sref, 71
Snd-stkchorus, 128
Snd-stkpitshift, 128
Snd-stkrev, 128
Snd-stop-time, 71
Snd-stoponzero, 143
Snd-t0, 71
Snd-tapf, 121
Snd-tapv, 120
Snd-time, 71
Snd-tone, 128
Snd-tonev, 129
Snd-trigger, 143
Snd-up, 124
Snd-white, 119
Snd-xform, 125
Snd-yin, 125
Snd-zero, 119
Soften-clipping, 208
Sort, 246
Sound, 77
sound

accessing point, 67
creating from array, 68

Sound browser, nyquistide, 24
Sound file directory default, 110
Sound file i/o, 110
Sound file info, 115
Sound file name, 110
Sound from lisp data, 69
Sound-off, 111
Sound-on, 111
Sound-srate-abs, 105
Sound-warp, 80
Soundfilename, 115
Soundp, 71
Sounds, 66
Sounds vs. behaviors, 30
Span, 213
Spatialization, 213
Spec-plot, 116
Spec-print, 116
Special command, 153
Spectral analysis, 147
Spectral interpolation, 83
Spectral processing, fft analysis, 147
Spectrum plot, 116

v 3.24 285

Nyquist Reference Manual Index

Speed-dial, 213
Splines, 84
Sqrt, 256
Square oscillator, 82
Square root, 101, 119
Srate, 67
Sref, 67
Sref-inverse, 68
St, 19
Stacatto, 106
Staccato, 155
Stack trace, 254
Standard deviation, 205
Standard deviation of vector, 206
Standard midi file, 201
Statements, sal, 55
Statistics, 205
Stats, 71
Step-to-hz, 75
Stereo, 213
Stereo pan, 213
Stereo panning, 79
Stereo-chorus, 210
Stereoize, 213
Stk banded waveguide, 132
Stk bowed, 132
Stk bowed string, 97
Stk bowed-freq, 97
Stk chorus, 95, 128
Stk clarinet, 95, 96, 132
Stk flute, 97, 132, 133
Stk glass harmonica, 98
Stk jcreverb, 94
Stk mandolin, 133
Stk mandolon, 98
Stk modal bar, 98, 133
Stk nreverb, 94
Stk pitch shift, 95, 128
Stk prcreverb, 94
Stk reverb, 128
Stk sax, 96, 133
Stk sitar, 98, 134
Stk tibetan bowl, 98
Stk tuned bar, 98
Stk uniform bar, 98
Stk-breath-env, 98
Stkchorus, 95
Stochastic functions, 184

Stop-on-zero, 142
Strcat, 258
Streamp, 248
Stretch, 17, 99, 105
Stretch transformation, 31
Stretch, sal, 54
Stretch-abs, 106
Stretching sampled sounds, 41
String, 257
String functions, 257
String stream functions, 265
String synthesis, 83
String-downcase, 258
String-equal, 259
String-greaterp, 259
String-left-trim, 257
String-lessp, 259
String-not-equal, 259
String-not-greaterp, 259
String-not-lessp, 259
String-right-trim, 257
String-search, 257
String-trim, 257
String-upcase, 257
String/=, 258
String<, 258
String<=, 258
String=, 258
String>, 258
String>=, 258
Stringp, 247
Sublis, 245
Subscript character in string, 259
Subseq, 258
Subset, 204
Subsetp, 204
Subst, 245
Suggestions, 8
Sum, 109
Sum pattern, 181
Surround sound, 213
Sustain, 106
Sustain-abs, 106
Swap channels, 213
Swapchannels, 213
Symbol functions, 240
Symbol-function, 241
Symbol-name, 241

v 3.24 286

Nyquist Reference Manual Index

Symbol-plist, 241
Symbol-value, 241
Symbolp, 247
Symbols, 238
Synchronization, 164
System functions, 266

T, 153
T (adagio triplet), 154
T-test, statistics, 205
Table, 92
Table memory, 71
Tagbody, 252
Tan, 256
Tap, 120
Tapped delay, 94
Tapv, 94
Temp file, 263, 264
Tempo, 153, 157
Temporary sound files directory, 110
Temporary files, 263
Terpri, 262
Third, 243
Thirtysecond note, 154
Threshold, 123
Throw, 250
Time, 152, 153, 157, 266
Time shift, sal, 54
Time stretch, 99
Time structure, 106
Time units, 161
Timed-seq, 109
To-mono, 72
Tone, 91
Top button, 22
Top-level, 253
Touch tone, 212
Trace, 253
Transformation environment, 27
Transformations, 27, 104
Transpose, 99, 106
Transpose-abs, 106
Triangle oscillator, 82
Triangle table, 138
Triangle wave, 15
Trigger, 143
Trill, 166
Triplet, 154
Triplet durations, 19

Truncate, 254
Tuba, 20
Tuning, 19, 74, 75
Tutorial, fm, 46
Type-of, 267

U, 154
Uniform random, 174
Uniform random, 255
Union, 204
Unless, 250
Untrace, 253
Unwind-protect, 251
Upic, 25
Upper-case-p, 259
User name, 264

V (adagio voice), 156
Variable delay, 94, 120, 121
Variable-resample function, 120
Variance, 205
Variance of vector data, 206
Vector, 242
Vector cosine, 206
Vector difference, 206
Vector median, 206
Vector norm, 206
Vectors, 206
Vel-to-db, 76
Vel-to-linear, 76
Velocity, 156
Vocal sound, 20
Voice, 152, 156
Voice synthesis, 92
Volume, 162

W, 19
W (adagio whole note), 154
Warble, 46
Warp, 106
Warp-abs, 106
Waveforms, 15, 78
Waveshaping, 92
Wavetables, 15, 78
Wd, 19
Welch’s t-test, 205
Wg-glass-harm, 98
Wg-tibetan-bowl, 98
Wg-tuned-bar, 98

v 3.24 287

Nyquist Reference Manual Index

Wg-uniform-bar, 98
When, 173, 250
While, 173
Whole note, 19, 154
Widen, 213
Wii controller, 144
Wind sound, 48
Wind_tutorial.htm, 48
Window pattern, 182
Window initialization, 268
With statement, sal, 63
Wood drum sound, 20
Workspace, 24, 202
Write adagio file, 151
Write midi file, 151
Write samples to file, 111
Write-byte, 265
Write-char, 264
Write-float, 265
Write-int, 264
Wt, 19

X (adagio control), 162
Xenakis, 25
Xlisp command loop, 231
Xlisp data types, 232
Xlisp evaluator, 233
Xlisp lexical conventions, 233
Xmusic, 175

Y (adagio control), 162
Yin, 103

Z (adagio control), 162
Z (adagio program), 156
Zerop, 248

v 3.24 288

	Introduction and Overview
	Installation
	Troubleshooting

	Using NyquistIDE
	Using SAL
	Command Line
	Helpful Hints
	Using Lisp
	Examples
	Non-Sinusoidal Waveforms
	Using Wavetables
	Sequences
	Envelopes
	Piece-wise Linear Functions

	Predefined Constants
	More Examples

	The NyquistIDE Program
	NyquistIDE Overview
	The Button Bar
	Command Completion
	Extension Manager
	Browser
	Envelope Editor
	Equalizer Editor
	UPIC Editor

	Behavioral Abstraction
	The Environment
	Sequential Behavior
	Simultaneous Behavior
	Sounds vs. Behaviors
	The At Transformation
	The Stretch Transformation
	Nested Transformations
	Defining Behaviors
	Overriding Default Transformations
	Sampling Rates

	Continuous Transformations and Time Warps
	Simple Transformations
	Time Warps
	Abstract Time Warps
	Nested Transformations

	More Examples
	Stretching Sampled Sounds
	Saving Sound Files
	Memory Space and Normalization
	Frequency Modulation
	Building a Wavetable
	Filter Examples
	DSP in Lisp

	SAL
	SAL Syntax and Semantics
	Expressions
	Simple Expressions
	Operators
	Function Calls
	Array Notation
	Conditional Values

	SAL Statements
	begin and end
	chdir
	define variable
	define function
	exec
	if
	when
	unless
	load
	loop
	play
	plot
	print
	display
	return
	set
	with
	exit

	Interoperability of SAL and XLISP
	Function Calls
	Symbols and Functions
	Playing Tricks On the SAL Compiler

	Nyquist Functions
	Sounds
	What is a Sound?
	Multichannel Sounds
	Accessing and Creating Sound
	Miscellaneous Functions

	Behaviors
	Using Previously Created Sounds
	Sound Synthesis
	Oscillators
	Piece-wise Approximations
	Filter Behaviors
	Effects
	Physical Models
	Phase Vocoder
	More Behaviors

	Transformations
	Combination and Time Structure
	Sound File Input and Output
	Low-level Functions
	Creating Sounds
	Signal Operations
	Filters
	Table-Lookup Oscillator Functions
	Phase Vocoder Functions
	Physical Model Functions
	Sequence Support Functions

	Nyquist Globals
	Interactive Nyquist
	Interactive Control with the NyquistIDE
	Creating a Control Panel
	Creating Controls
	Accessing Control Values
	Starting and Stopping Sounds

	Using Open Sound Control
	Sending Open Sound Control Messages
	Python3 OSC Interface Demo
	Test Programs in C
	The ser-to-osc Program

	Time/Frequency Transformation
	Spectral Processing

	MIDI, Adagio, and Sequences
	The SEQ Type
	Adagio Score Language
	Specifying Attributes
	Time
	Pitch
	Duration
	Next Time
	Rest
	Articulation
	Loudness
	Voice
	Timbre (MIDI Program)
	Tempo
	Rate

	Default Attributes
	Examples
	Advanced Features
	Time Units and Resolution
	Multiple Notes Per Line
	Control Change Commands
	Multiple Tempi
	MIDI Synchronization
	System Exclusive Messages
	Control Ramps
	The !End Command
	Calling C Routines
	Setting C Variables

	Linear Prediction Analysis and Synthesis
	LPC Classes and Functions
	Low-level LPC Functions

	Developing and Debugging in Nyquist
	Debugging
	Useful Functions

	Xmusic and Algorithmic Composition
	Xmusic Basics
	Xmusic Patterns
	Nested Patterns
	Periods
	General Parameters for Creating Pattern objects
	cycle
	line
	random
	palindrome
	heap
	accumulation
	copier
	accumulate
	sum
	product
	eval
	length
	window
	markov

	Random Number Generators
	Score Generation and Manipulation
	Keyword Parameters
	Using score-gen
	Score Manipulation
	Xmusic and Standard MIDI Files
	Workspaces
	Utility Functions

	Nyquist Libraries
	Statistics
	Plots
	Labeling Audio Events, Marking Audio Times, Displaying Marked Audio Times
	Linear Regression
	Vector Math, Linear Algebra
	JSON Input and Output
	Piano Synthesizer
	Dynamics Compression
	Clipping Softener
	Graphical Equalizer
	Sound Reversal
	Time Delay Functions
	Multiple Band Effects
	Granular Synthesis
	Chowning FM Voices
	Atonal Melody Composition
	MIDI Utilities
	Reverberation
	DTMF Encoding
	Dolby Surround(R), Stereo and Spatialization Effects
	Drum Machine

	Extending Nyquist
	Translating Descriptions to C Code
	Rebuilding Nyquist
	Accessing the New Function
	Why Translation?
	Writing a .alg File
	Attributes
	Generated Names
	Scalar Arguments

	Intgen
	Overview
	Extending Xlisp

	Header file format
	Using #define'd macros
	Lisp Include Files
	Example
	More Details

	XLISP: An Object-oriented Lisp
	Introduction
	A Note From The Author
	XLISP Command Loop
	Special Characters
	Break Command Loop
	Data Types
	The Evaluator
	Lexical Conventions
	Readtables
	Lambda Lists
	Objects
	The ``Object'' Class
	The ``Class'' Class
	Profiling
	Symbols
	Evaluation Functions
	Symbol Functions
	Property List Functions
	Array Functions
	List Functions
	Destructive List Functions
	Predicate Functions
	Control Constructs
	Looping Constructs
	The Program Feature
	Debugging and Error Handling
	Arithmetic Functions
	Bitwise Logical Functions
	String Functions
	Character Functions
	Input/Output Functions
	The Format Function
	File I/O Functions
	String Stream Functions
	System Functions
	File I/O Functions
	Input from a File
	Output to a File
	A Slightly More Complicated File Example

	Index

